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You can do it, and your camera can do it too – but how does face detection work?

T
he i rst time I looked at the rear 
display of a camera that had 
face-detection software, it was an 
interesting experience. Point it at a 

person, and the software would superimpose a 
coloured square over that person’s face. This 
would enable you to more easily frame the 
photo, ensure correct exposure for the face 
compared to the rest of the scene and make 
sure that the face was properly focused. 

So how did it manage it? What’s so special 
about a face that enables the camera to identify 
that this set of pixels is a face, but that set isn’t? 
And in real-time too? The camera doesn’t have 
a chip with great processing power, 
either, so the algorithm must be 
extremely efi cient. We should also 
remember that over the years, camera 
face-detection software has become 
pretty advanced. You can now expect 
the software in your point-and-shoot 
camera to work out not just the location of a 
face but also whether the person is smiling, 
and to take the photo automatically if so. 

Back in 2001, Paul Viola and Michael Jones 
invented a new framework for detecting 
arbitrary objects and rei ned it for face 
detection. The algorithm is now known 
as the Viola-Jones framework.

The i rst thing to realise is that face 
detection, whether by Viola-Jones or not, is 
not an exact science. Just like we humans can 
be fooled by images that seem to contain a face 
when in reality they do not, so face-detection 
software can be hoodwinked. This phenomenon 
is known as pareidolia: the apparent recognition 
of something signii cant (usually a face or a 
human form) in something that doesn’t have it 

naturally. There are many examples of this, 
the most prominent being perhaps the Face 
on Mars – a photo taken in the Cydonia region 

of Mars that appeared to contain a human face 
in the rock – or the image of the Virgin Mary 
that an American lady found in a grilled cheese 
sandwich. Face detection software can be 
fooled too, so we talk about the algorithm’s 
rate of false positives (detecting a face when 
there is none) or false negatives (not detecting 
a face that’s present).

A good guess
The Viola-Jones method has a very high 
accuracy rate – the researchers report a false 
negative rate of less than one per cent and a 
false positive rate of under 40 per cent, even 

when used with the simplest i lter. 
(The full framework uses up to 32 
i lters, or ‘classii ers’.)

But we’re getting ahead of ourselves. 
The breakthrough for Viola and Jones 
came when they didn’t try to analyse 
the image directly: instead, they started 

to analyse rectangular ‘features’ in the image. 
These features are known as ‘Haar-like 
features’, due to the similarity of the analysis 3

      You can now expect your
camera to work out whether
a person is smiling
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1 Figure 1: Types of features used in Viola-Jones.
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Now that we have an image deined as a set 
of intensity values (from 0 to 255), we can 
use them to look for large-scale rectangular 
features in the image. We do this by summing 
the intensity values in various rectangular 
blocks. Using these sums we can detect ‘darker’ 
blocks adjacent to ‘lighter’ blocks since the sum 

of the intensity pixels in a dark block will 
be less than the sum in a light block. These 
adjacent blocks are known as ‘features’. (Note 
that, despite the fact we’re using Viola-Jones to 
detect faces, the word ‘feature’ does not pertain 
to facial features in any way.)

Viola-Jones deines several different types 
of features (see Figure 1). The irst feature is a 
light block next to a dark one, vertically. The 
second is the same but horizontally. The third 
is a light block sandwiched between two dark 
blocks (or vice versa). The fourth is a four-
rectangle feature as shown. Note that in a 
feature the rectangular blocks are the same 
size. The features can be at any scale or at any 
position in the image, so the features shown in 
Figure 1 are just examples at an arbitrary size.

A particular feature can be positioned and 
scaled onto the original image. The feature 
value is calculated as 
the sum of the pixel 
intensities in the light 
rectangle(s) minus the 
sum of the pixels in the 
dark rectangle(s). The 
value of the feature is 
then used in a ilter to 
determine if that 
feature is ‘present’ in 
the original image.
It still sounds 
computationally 
expensive (that is, 
slow). To improve the 

speed of summing the intensities of the pixels 
in a given rectangle, we make use of a trick. 
For a given image we can calculate what’s 
known as the integral image at every point. 
This is merely the sum of the pixels of the 
rectangle from the upper-left corner to the 
given point, and it can be calculated for every 
point in the original image in a single pass 
across the image. The word ‘integral’ comes 
from the same meaning as ‘integrating’ – 
inding the area under a curve by adding 
together small rectangular areas.

Intense calculations
Once we have the integral image for every 
point, we can calculate the sum of intensities 
for any arbitrary rectangle by using the 
identities shown in Figure 2. We want to 
calculate the sum of the pixels for the rectangle 
abcd. We start off with the integral image for 
point a, and then subtract the integral images 
for points b and d. This unfortunately takes off 
too much (as shown by the double hatching) 
and so we add back in the integral image for 
point c. As you can see, it’s a very quick 
calculation once we have generated all the 
integral images, presumably stored in an array.

We now have in place all 
the requisites to calculate the 
summed intensity values for 
a set of features. But what are 
we going to do with them? 
Compared with analysing the 
pixels directly, features provide 

a coarse, low-resolution view of the image. 
They’re good at detecting edges between light 
and dark, bars, and other simple structures.

What we do is to implement a learning 
system. We give the face detection routine a set 
of 24 x 24 images of faces (and another set of 
24 x 24 images of things that are not faces) and 
train the routine to recognise faces and discard 
non-faces. Viola and Jones used a database 
culled from the internet of about 4,000 faces 
and 10,000 non-faces to do the training. 
What’s involved in the training?

Using 24 x 24 images, there are some 
45,000 different ways to place one of the four 
types of feature onto the image. For example, 
for the irst type of feature, you could have 
rectangles one pixel wide by two pixels deep, 
all the way up to 1 x 24, then 2 x 2 to 2 x 24, 
and so on. These different-sized features would 

be placed in various 
positions across the 
image to test every 
possible feature for 
every possible size 
at every possible 
position. Note that 
the number of possible 
features, 45,000, is 
far greater than the 
number of pixels in a 
24 x 24 image (a mere 
576 pixels) and so you 
must reduce the 
number you use.

Spotlight on… Fooling the system
Now that we see how the Viola-Jones system 

works, it’s instructive to think of ways to fool 

it. After all, since face detection is the first step 

in face recognition, how can a master criminal 

who skirts the law avoid automatic systems 

and pass unnoticed?

Since the first classifier rejects the 

majority of non-face images, and it is the 

simplest, it makes sense to target it. If you 

fool that classifier, none of the others would 

be activated. To do that means changing 

the pattern of light and dark from eyes to 

cheekbones, or across the bridge of the nose.

Perhaps the best idea, and one that probably 

wouldn’t elicit too much finger-pointing 

(after all, it would be silly to become more 

noticeable to people in the street in an 

attempt to hide from automated systems), 

would be to use the black makeup used by 

American football players and accent under 

and over the eye. That would make the eyes 

lighter than the surroundings and thereby 

possibly fool the system.

Other research indicates that using dark 

makeup applied asymmetrically would work 

too, but this is more noticeable. One day, 

perhaps, it will be normal to apply makeup in 

this fashion in order to maintain privacy. n

of complex waveforms with Haar wavelets. 
These  are simple square waveforms, and 
are named after Alfréd Haar, a Hungarian 
mathematician whow as working at the turn 
of the 20th century.

The irst thing to do is strip colour from 
the image and work with a simple greyscale 
colour space. A simple way of doing this is 
to transform the image to the ‘YCbCr’ colour 
space, where the Y component is a measure 
of intensity or luminance in the original image 
(the other components can be ignored for now, 
although they could be used to distinguish 
lesh tones at a later detection stage). To 
calculate the Y component (the luma) of a 
pixel, use the formula Y = 0.299R + 0.587G + 
0.114B, where the values R, G, B are the red, 
green and blue components of a pixel’s value. 

Once you have a functioning Viola-Jones system, 

it’s pretty easy – if tedious – to modify it to detect 

smiling faces. The trick is to merely train the 

system on another set of faces, all of which are 

smiling. Because the smile generally involves 

baring the teeth to a certain extent, the smile 

is lighter than its surroundings. This greater 

difference in intensity would be easily noticeable 

by a rectangular feature. n

Smiling detection

3

1 Figure 2: Calculating sums of intensities using 

integral images. 

       If it passes through all the 
classifiers, the subwindow 
is classified as a face
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3 Figure 3: The first 

classifier on a 24 x 24 

image of the author’s 

face showing the two 

features in use.
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Remember, you’re calculating the difference 
between the pixel sum for the light and dark 
parts of the feature. You could decide on a 
threshold for difference (which could be 
tweaked during training) whereby a feature is 
assumed to be detected or not. Using this, you 
would then apply every one of the 45,000 
possible features to your training set. 

What you’d i nd is that certain features are 
worthless at determining whether an image is 
a face or not – that is, there would be no 
correlation between the feature identifying a 
face and it not being one, and vice versa. These 
would be rejected. However, some would have 
a high success rate at rejecting non-faces, and 
this is where the training comes in.

Face or not?
Viola and Jones then experimented with the 
remaining features to determine the best way 
of using them to classify an image as ‘face’ or 
‘non-face’. After experimentation they decided 
to use a training system called AdaBoost to 
build a classii er. AdaBoost is an artii cial 
intelligence (AI) technique similar to a neural 

network, devised to combine ‘weak’ features 
into a ‘stronger’ classii er. Each feature within 
a classii er is assigned a weighting (tweaked 
during training) that dei nes how ‘accurate’ 
that classii er is. Low weighting means a weak 
feature, high weighting a stronger one. Add up 
the weightings of the features that test positive 
for a particular image and if that sum is above 
a threshold (again, tweakable during training) 
then that image is determined to be a face.

As it happens, during this training they 
found that there were two features that, when 
combined and properly tuned by AdaBoost 
into a single classii er, would pass though 100 
per cent of the faces with a 40 per cent false 

positive rate (60 per cent of the 
non-faces would be rejected by 
this classii er). Figure 3 shows 
this simple classii er in action. It 
uses two features to test the 
image: a horizontal feature that 
measures the difference 
between the darker eyes and the 
lighter cheekbones, and the 
three-rectangle feature that 
tests for the darker eyes against 
the lighter bridge of the nose.

Although they had been 
trying to implement a strong 
classii er from a combination 
of 200 or so weak classii ers, 
this early success prompted 
them to build a cascade of 
classii ers instead of a single 
large one (see Figure 4). Each 
subwindow of the original 
image is tested against the i rst 
classii er. If it passes that 
classii er, it’s tested against the 
second. If it passes that one, it’s 
then tested against the third, 
and so on. If it fails at any stage 
of the testing, the subwindow is 

rejected as a possible face. If it passes through 
all the classii ers then the subwindow is 
classii ed as a face. The interesting thing is that 

the second and subsequent classii ers are not 
trained with the full training set. Instead they 
are trained on the images that pass the prior 
classii ers in the chain.

The second and subsequent classii ers are 
more complex and have more features than the 
i rst one, so they require more computational 
time. It seems remarkable then that there is 
such a simple classii er that will reject so many 
sub-windows without having to go through the 
calculations required for the more complex 
classii ers. Remember that it’s far more likely 
that a random image contains no face at all, 
and so being able to reject the majority of 
sub-windows with as small a set of calculations 
as possible is a good thing.

Final reckoning
The eventual cascade developed by Viola and 
Jones had 32 stages and used a total of 4,297 
features (out of the original total of 45,000). 
The i rst classii er uses the two features 
described above, the next uses i ve further 
features and rejects 80 per cent of the 
non-faces. The next three use 20 features 
and subsequent ones even more. The whole 
training took several weeks.

Finally, when presented with an actual 
image, the face detector scans the complete 
image at multiple scales and with multiple 
locations per scale. The researchers found that 
scaling the image by a factor of 1.25 each time 
produced the most accurate results. They also 
discovered that they didn’t need to test each 
individual location: they could skip a couple or 
so pixels each time and still get good results.

The overall result is that the Viola-Jones 
method produces accurate results very quickly, 
and certainly fast enough for the limited 
processing power of the average point-and-
shoot camera to cope with. 

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express.
feedback@pcplus.co.uk

Although Viola-Jones was originally developed to 

enhance the speed of face detection, it can be 

used to detect other objects. Examples include 

security systems that can detect pedestrians 

rather than birds, cats and dogs. Microsoft’s 

Project Natal is a very sophisticated system that 

can detect individual limbs (arms, legs, and even 

fi ngers) in 3D while ignoring any furniture, such as 

chairs, around the room. n

Other objects

3 Figure 4: The Viola-Jones 

cascade of classifiers.
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