
Make it

Theory
workshop

How to find a face

 296 July 2010 81

You can do it, and your camera can do it too – but how does face detection work?

T
he i rst time I looked at the rear
display of a camera that had
face-detection software, it was an
interesting experience. Point it at a

person, and the software would superimpose a
coloured square over that person’s face. This
would enable you to more easily frame the
photo, ensure correct exposure for the face
compared to the rest of the scene and make
sure that the face was properly focused.

So how did it manage it? What’s so special
about a face that enables the camera to identify
that this set of pixels is a face, but that set isn’t?
And in real-time too? The camera doesn’t have
a chip with great processing power,
either, so the algorithm must be
extremely efi cient. We should also
remember that over the years, camera
face-detection software has become
pretty advanced. You can now expect
the software in your point-and-shoot
camera to work out not just the location of a
face but also whether the person is smiling,
and to take the photo automatically if so.

Back in 2001, Paul Viola and Michael Jones
invented a new framework for detecting
arbitrary objects and rei ned it for face
detection. The algorithm is now known
as the Viola-Jones framework.

The i rst thing to realise is that face
detection, whether by Viola-Jones or not, is
not an exact science. Just like we humans can
be fooled by images that seem to contain a face
when in reality they do not, so face-detection
software can be hoodwinked. This phenomenon
is known as pareidolia: the apparent recognition
of something signii cant (usually a face or a
human form) in something that doesn’t have it

naturally. There are many examples of this,
the most prominent being perhaps the Face
on Mars – a photo taken in the Cydonia region

of Mars that appeared to contain a human face
in the rock – or the image of the Virgin Mary
that an American lady found in a grilled cheese
sandwich. Face detection software can be
fooled too, so we talk about the algorithm’s
rate of false positives (detecting a face when
there is none) or false negatives (not detecting
a face that’s present).

A good guess
The Viola-Jones method has a very high
accuracy rate – the researchers report a false
negative rate of less than one per cent and a
false positive rate of under 40 per cent, even

when used with the simplest i lter.
(The full framework uses up to 32
i lters, or ‘classii ers’.)

But we’re getting ahead of ourselves.
The breakthrough for Viola and Jones
came when they didn’t try to analyse
the image directly: instead, they started

to analyse rectangular ‘features’ in the image.
These features are known as ‘Haar-like
features’, due to the similarity of the analysis 3

 You can now expect your
camera to work out whether
a person is smiling

PCP296.theory 81 12/5/10 4:02:24 pm

1 Figure 1: Types of features used in Viola-Jones.

Make it Theory workshop

82 296 July 2010

Now that we have an image deined as a set
of intensity values (from 0 to 255), we can
use them to look for large-scale rectangular
features in the image. We do this by summing
the intensity values in various rectangular
blocks. Using these sums we can detect ‘darker’
blocks adjacent to ‘lighter’ blocks since the sum

of the intensity pixels in a dark block will
be less than the sum in a light block. These
adjacent blocks are known as ‘features’. (Note
that, despite the fact we’re using Viola-Jones to
detect faces, the word ‘feature’ does not pertain
to facial features in any way.)

Viola-Jones deines several different types
of features (see Figure 1). The irst feature is a
light block next to a dark one, vertically. The
second is the same but horizontally. The third
is a light block sandwiched between two dark
blocks (or vice versa). The fourth is a four-
rectangle feature as shown. Note that in a
feature the rectangular blocks are the same
size. The features can be at any scale or at any
position in the image, so the features shown in
Figure 1 are just examples at an arbitrary size.

A particular feature can be positioned and
scaled onto the original image. The feature
value is calculated as
the sum of the pixel
intensities in the light
rectangle(s) minus the
sum of the pixels in the
dark rectangle(s). The
value of the feature is
then used in a ilter to
determine if that
feature is ‘present’ in
the original image.
It still sounds
computationally
expensive (that is,
slow). To improve the

speed of summing the intensities of the pixels
in a given rectangle, we make use of a trick.
For a given image we can calculate what’s
known as the integral image at every point.
This is merely the sum of the pixels of the
rectangle from the upper-left corner to the
given point, and it can be calculated for every
point in the original image in a single pass
across the image. The word ‘integral’ comes
from the same meaning as ‘integrating’ –
inding the area under a curve by adding
together small rectangular areas.

Intense calculations
Once we have the integral image for every
point, we can calculate the sum of intensities
for any arbitrary rectangle by using the
identities shown in Figure 2. We want to
calculate the sum of the pixels for the rectangle
abcd. We start off with the integral image for
point a, and then subtract the integral images
for points b and d. This unfortunately takes off
too much (as shown by the double hatching)
and so we add back in the integral image for
point c. As you can see, it’s a very quick
calculation once we have generated all the
integral images, presumably stored in an array.

We now have in place all
the requisites to calculate the
summed intensity values for
a set of features. But what are
we going to do with them?
Compared with analysing the
pixels directly, features provide

a coarse, low-resolution view of the image.
They’re good at detecting edges between light
and dark, bars, and other simple structures.

What we do is to implement a learning
system. We give the face detection routine a set
of 24 x 24 images of faces (and another set of
24 x 24 images of things that are not faces) and
train the routine to recognise faces and discard
non-faces. Viola and Jones used a database
culled from the internet of about 4,000 faces
and 10,000 non-faces to do the training.
What’s involved in the training?

Using 24 x 24 images, there are some
45,000 different ways to place one of the four
types of feature onto the image. For example,
for the irst type of feature, you could have
rectangles one pixel wide by two pixels deep,
all the way up to 1 x 24, then 2 x 2 to 2 x 24,
and so on. These different-sized features would

be placed in various
positions across the
image to test every
possible feature for
every possible size
at every possible
position. Note that
the number of possible
features, 45,000, is
far greater than the
number of pixels in a
24 x 24 image (a mere
576 pixels) and so you
must reduce the
number you use.

Spotlight on… Fooling the system
Now that we see how the Viola-Jones system

works, it’s instructive to think of ways to fool

it. After all, since face detection is the first step

in face recognition, how can a master criminal

who skirts the law avoid automatic systems

and pass unnoticed?

Since the first classifier rejects the

majority of non-face images, and it is the

simplest, it makes sense to target it. If you

fool that classifier, none of the others would

be activated. To do that means changing

the pattern of light and dark from eyes to

cheekbones, or across the bridge of the nose.

Perhaps the best idea, and one that probably

wouldn’t elicit too much finger-pointing

(after all, it would be silly to become more

noticeable to people in the street in an

attempt to hide from automated systems),

would be to use the black makeup used by

American football players and accent under

and over the eye. That would make the eyes

lighter than the surroundings and thereby

possibly fool the system.

Other research indicates that using dark

makeup applied asymmetrically would work

too, but this is more noticeable. One day,

perhaps, it will be normal to apply makeup in

this fashion in order to maintain privacy. n

of complex waveforms with Haar wavelets.
These are simple square waveforms, and
are named after Alfréd Haar, a Hungarian
mathematician whow as working at the turn
of the 20th century.

The irst thing to do is strip colour from
the image and work with a simple greyscale
colour space. A simple way of doing this is
to transform the image to the ‘YCbCr’ colour
space, where the Y component is a measure
of intensity or luminance in the original image
(the other components can be ignored for now,
although they could be used to distinguish
lesh tones at a later detection stage). To
calculate the Y component (the luma) of a
pixel, use the formula Y = 0.299R + 0.587G +
0.114B, where the values R, G, B are the red,
green and blue components of a pixel’s value.

Once you have a functioning Viola-Jones system,

it’s pretty easy – if tedious – to modify it to detect

smiling faces. The trick is to merely train the

system on another set of faces, all of which are

smiling. Because the smile generally involves

baring the teeth to a certain extent, the smile

is lighter than its surroundings. This greater

difference in intensity would be easily noticeable

by a rectangular feature. n

Smiling detection

3

1 Figure 2: Calculating sums of intensities using

integral images.

 If it passes through all the
classifiers, the subwindow
is classified as a face

PCP296.theory 82 12/5/10 4:02:25 pm

3 Figure 3: The first

classifier on a 24 x 24

image of the author’s

face showing the two

features in use.

Theory workshop Make it

 296 July 2010 83

Remember, you’re calculating the difference
between the pixel sum for the light and dark
parts of the feature. You could decide on a
threshold for difference (which could be
tweaked during training) whereby a feature is
assumed to be detected or not. Using this, you
would then apply every one of the 45,000
possible features to your training set.

What you’d i nd is that certain features are
worthless at determining whether an image is
a face or not – that is, there would be no
correlation between the feature identifying a
face and it not being one, and vice versa. These
would be rejected. However, some would have
a high success rate at rejecting non-faces, and
this is where the training comes in.

Face or not?
Viola and Jones then experimented with the
remaining features to determine the best way
of using them to classify an image as ‘face’ or
‘non-face’. After experimentation they decided
to use a training system called AdaBoost to
build a classii er. AdaBoost is an artii cial
intelligence (AI) technique similar to a neural

network, devised to combine ‘weak’ features
into a ‘stronger’ classii er. Each feature within
a classii er is assigned a weighting (tweaked
during training) that dei nes how ‘accurate’
that classii er is. Low weighting means a weak
feature, high weighting a stronger one. Add up
the weightings of the features that test positive
for a particular image and if that sum is above
a threshold (again, tweakable during training)
then that image is determined to be a face.

As it happens, during this training they
found that there were two features that, when
combined and properly tuned by AdaBoost
into a single classii er, would pass though 100
per cent of the faces with a 40 per cent false

positive rate (60 per cent of the
non-faces would be rejected by
this classii er). Figure 3 shows
this simple classii er in action. It
uses two features to test the
image: a horizontal feature that
measures the difference
between the darker eyes and the
lighter cheekbones, and the
three-rectangle feature that
tests for the darker eyes against
the lighter bridge of the nose.

Although they had been
trying to implement a strong
classii er from a combination
of 200 or so weak classii ers,
this early success prompted
them to build a cascade of
classii ers instead of a single
large one (see Figure 4). Each
subwindow of the original
image is tested against the i rst
classii er. If it passes that
classii er, it’s tested against the
second. If it passes that one, it’s
then tested against the third,
and so on. If it fails at any stage
of the testing, the subwindow is

rejected as a possible face. If it passes through
all the classii ers then the subwindow is
classii ed as a face. The interesting thing is that

the second and subsequent classii ers are not
trained with the full training set. Instead they
are trained on the images that pass the prior
classii ers in the chain.

The second and subsequent classii ers are
more complex and have more features than the
i rst one, so they require more computational
time. It seems remarkable then that there is
such a simple classii er that will reject so many
sub-windows without having to go through the
calculations required for the more complex
classii ers. Remember that it’s far more likely
that a random image contains no face at all,
and so being able to reject the majority of
sub-windows with as small a set of calculations
as possible is a good thing.

Final reckoning
The eventual cascade developed by Viola and
Jones had 32 stages and used a total of 4,297
features (out of the original total of 45,000).
The i rst classii er uses the two features
described above, the next uses i ve further
features and rejects 80 per cent of the
non-faces. The next three use 20 features
and subsequent ones even more. The whole
training took several weeks.

Finally, when presented with an actual
image, the face detector scans the complete
image at multiple scales and with multiple
locations per scale. The researchers found that
scaling the image by a factor of 1.25 each time
produced the most accurate results. They also
discovered that they didn’t need to test each
individual location: they could skip a couple or
so pixels each time and still get good results.

The overall result is that the Viola-Jones
method produces accurate results very quickly,
and certainly fast enough for the limited
processing power of the average point-and-
shoot camera to cope with.

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

Although Viola-Jones was originally developed to

enhance the speed of face detection, it can be

used to detect other objects. Examples include

security systems that can detect pedestrians

rather than birds, cats and dogs. Microsoft’s

Project Natal is a very sophisticated system that

can detect individual limbs (arms, legs, and even

fi ngers) in 3D while ignoring any furniture, such as

chairs, around the room. n

Other objects

3 Figure 4: The Viola-Jones

cascade of classifiers.

PCP296.theory 83 12/5/10 4:02:30 pm

