
Make it

Theory
workshop

Raytracing revealed

 295 June 2010 81

Painting a scene with light rays is one of the most fascinating parts of graphics
theory. Find out everything you need to know

R
endering views of imaginary worlds
on a computer screen is an intriguing
pursuit. There are many techniques
used depending on the requirements

of the output medium (games and movies, for
example, generally use different techniques).
The technique that produces the most lifelike
results is raytracing, since it renders the images
using realistic lighting and shadows, as well as
taking into account refl ections and refractions
of the light.

Over the past couple of decades – perhaps
even longer than that – computer graphics
have become ever more prevalent in movies.
It seems that not a week goes by without the
release of another digitally enhanced production
that redefi nes the art of placing computer
graphics centre-stage on the big screen. In
2009, we were treated to fi lms like Up from
masters of digital animation Pixar, and Avatar
from James Cameron. Both of them relied on
computer-generated graphics like never before.
I, like many, am fascinated with the ‘behind
the scenes’ videos you can sometimes fi nd

online, or with the interviews with the
producers and animators that attempt to
scratch the surface of what’s required to
render the graphics for these movies.

It’s not just movies, either. Modern computer
games – admittedly in close collaboration with
the GPU – continue to refi ne the art of smooth
3D graphics display. But before we discuss the
techniques involved in this area, it’s helpful to
defi ne the term ‘3D graphics’ in this context.
I’m not referring here to graphics that need
cinema-friendly glasses, but instead to the
rendering of a 3D scene on a 2D window: your
screen. In other words, items that are behind
or are cut off by closer items in the scene won’t
be seen on the screen.

Raytracing is one method for rendering a
3D scene on a fl at screen, and in particular a
scene with lots of complicated light interactions.
Where is all this light coming from? Well, there
might be several light sources in the scene; there
might be mirrors and other refl ective surfaces
(not necessarily planar); and there may also be
transparent or translucent objects. Ray tracing

assumes that we can follow (that is, trace)
individual light rays as they bounce around
the scene, hence its name.

Which rays should we trace?
As with any kind of process that creates a
computer-generated image, we must have a
scene that we are trying to render. The scene
will consist of a collection of objects – some
simple shapes like spheres and cubes; some
more complex and free-form, perhaps with
textured surfaces. The objects will all be
three-dimensional and have depth, as well as
length and breadth. The renderer will assume
a particular viewpoint looking at the scene,
which we can call the ‘eye’ or the ‘camera’. The
camera will be looking at the scene through a
viewport or window. The image we create will
be the view of the scene at that window (Figure
1). This is a little different from how your eye
or a real camera works, where the image is
projected behind the lens.

In raytracing, we trace the rays of light
from the scene and fi nd out where they hit the 3

PCP295.theory 81 13/4/10 4:25:58 pm

Make it Theory workshop

82 295 June 2010

camera. But
how do we know
which ones those
are? The answer
is to look at the
problem in reverse:
simulate the rays as leaving the
camera, passing though a pixel in the
viewport, and then work out where in the
scene that ray came from. We can plot which
objects it hits and what the interactions are,
maybe following that ray back even further in
the scene. The colour of the pixel will be some
combination of the objects the ray bounced off.

Bouncing light rays
Let’s get a little more precise about all this
‘bouncing’. Look at the wall wherever you are.
It’s a solid object and you can’t see through it.
It has a colour, too. Mine’s a light yellow. Why
do I see it as yellow? Because the sun is shining
on it (we assume the sun puts out light of all
wavelengths) and the wall refl ects light of
that particular wavelength or combination
of wavelengths, and absorbs all the other ones.
So, yellow objects refl ect yellow light; that’s
why they’re yellow. White objects refl ect all
wavelengths, whereas black objects absorb all.

So, you might ask, why are white objects
white and not a perfect mirror, which of course
refl ects all light too? The answer is that white
objects scatter the light due to imperfections
in the surface of the object, whereas mirrored
surfaces refl ect the light evenly. We can make
a simplifying assumption to begin with: that
only mirrored surfaces refl ect light from
somewhere else in the scene (as well as from
the light sources) and other objects merely
‘emit’ light of a particular colour – provided
that they’re being illuminated, of course.

We’ll leave refl ections for a moment and
concentrate on the colour of opaque objects,
since this is a good point to discuss shadows
and shading. Raytracing has to take into
account both of these in order to make the
scene more realistic.

Shadows are fairly simple. A shadow is cast
if a ray of light from the source cannot reach
the area in question. Figure 2 shows two rays
from the eye hitting an object. The top ray hits
the object at a point from which a line can be
drawn to the light source without hindrance.
The bottom ray hits the object at a point from
which a straight line cannot be drawn to the
light source: the object itself gets in the way.
The bottom point is then in shadow.

Shading, on the other hand, is more subtle.
The way to think of shading is as the angle
that rays from the source hit the surface of
the object. If the angle is 0°, the light source
is directly ‘above’ the object, and the point gets
the full effect of the illumination. If the angle
is greater than 0° – say, 45° – the point is tilted
away from the light and thus doesn’t get the
full illumination. As the angle increases
towards 90°, the brightness decreases, until
at 90° exactly the rays of light just graze the
surface and give no illumination.

Modelling shadows
We can model this effect pretty realistically
by using the cosine function. When the light
is perpendicular to the surface, the angle is 0,
and the cosine of it is 1.0. As the angle increases,
the cosine of the angle decreases. This is initially
a fairly slow transition, but there’s a rapid drop
off as the angle increases past 60 degrees. When
the angle is 90 degrees, the cosine is 0.0. This
method of allowing for shading is known,
unsurprisingly, as cosine shading.

Although this all seems very rigorous
and mathematical and accurate, it actually
produces some images with very harsh black
shadows, as if they were produced on the moon.

Spotlight on… POV-Ray
POV-Ray (Persistence of Vision Raytracer) is an

open-source, free raytracing program. It is quite

extraordinarily powerful and produces some

incredible images, some of which can take

several minutes (or even hours) to render.

POV-Ray comprises two parts: a complete

programming language to describe a scene,

the light sources, the camera position and

the various solid objects that form part of

the scene (as ways to merge or join them);

and the renderer that takes a description

written in this language to produce the fi nal

ray-traced image. It’s a great way to explore

what’s possible with raytracing.

I played around with POV-Ray to see if I could

produce an interesting image. The result is

Figure 4, where I show a solution to the 6 x 10

pentomino puzzle we discussed last issue, built

with translucent pieces hovering in the air – the

‘U’ about to be placed – and then two hovering

shiny spheres nearby refl ecting the solution

(and each other). Notice the shadow on the

ground from the main light source is coloured,

since the pieces are slightly transparent.

You can download POV-Ray from www.

povray.org or fi nd it on your SuperDisc. You

can see the source for this image at www.

tinyurl.com/RayPentomino. ■

viewport. If you think of the viewport as being
a rectangle of size 1,024 x 600 pixels (the size
of the screen on the netbook I’m using to type
this) then our job is to work out the RGB colour
value of each of the 600,000-odd pixels on the
screen by tracing light rays from the scene
towards the camera.

Actually, if you think about it, that’s a
pretty daunting task. Suppose we have a single
light source behind the camera illuminating
a refl ective sphere hovering over an infi nite
chessboard (the classic raytraced image).
Light rays from the source propagate in all
directions. Those that shoot off behind the
camera we’ll never see. The only light we do
see is, in effect, shooting out from the source
in a cone. Much of the light in the scene bounces
off the sphere away from the viewport. Trying
to simulate all the light rays coming out of the
light source would be computationally infeasible
as well as a waste of time: the vast majority of
them will hit parts of the scene that aren’t visible
from the camera or will be refl ected elsewhere.

To improve our computational performance,
we should, in effect, only simulate and trace
those light rays that are guaranteed to hit the
viewport at the right angle to actually enter the

1 Figure 2: When shadows occur with raytracing.

1 Figure 1: The terminology of raytracing.

3

PCP295.theory 82 13/4/10 4:26:0 pm

1 Refl ection 2 Refraction

 295 June 2010 83

Theory workshop Make it

The reason for this is that, in the real world,
air helps to scatter light, making it softer. There
are other effects at work too: light scattered
from coloured objects does illuminate other
surfaces, despite our simplifying assumption.
As a result, raytracing programs tend to use
a given value for ambient light or background
illumination. In this way shadows are never
plain black, but are actually illuminated by a
general ‘glow’, allowing you to see some detail
in the shadows. The ambient light is usually
defi ned by a small positive value, say 0.1 or
0.2, and the light for shading (diffuse light) is
defi ned as 1.0 minus the ambient light value.

The colour value, then, for a point on a
coloured object is the actual colour multiplied
by the sum of the ambient light and cosine
shading using the diffuse light.

Getting refl ections right
Let’s now talk about refl ection. I’m sure you
remember the rules for refl ection from school:
the refl ected ray has the same angle from the
perpendicular (the normal vector, if you want
to be precise) as does the incoming ray. And
that’s it – pretty easy (Figure 3, part 1).

Refraction is a little more
complicated, but not by
much. Here we assume
that the incident ray hits
the boundary of an object

that has some transparency (for example, glass
or water). Because light has a different speed in
different materials, rays will change direction
slightly (Figure 3, part 2). We’ve all seen this
effect when looking at a straw in a glass of
water: it appears that the straw is bent at the
surface of the water.

The amount of bending is a function of
the refractive indices of the two materials in
contact. Air, for example, has a refractive index
of about 1.0003, whereas water has a refractive
index of 1.33. Snell’s Law states that the ratio of
the sines of the angle of incidence and refraction
is equal to the reciprocal of the ratio of the
respective refractive indices. What this means
in practice is that light is bent towards the
perpendicular if the ray is travelling from the
material with the lower refractive index to that
with the higher. The situation is true in reverse
when light travels from the higher to the lower
refractive index.

That brings up another wrinkle to refraction
that also must be taken into account. When
light travels from, say, water to air, it bends
away from the perpendicular. There will be
an angle, called the critical angle, at which the
incident light ray will be refracted at exactly
90° along the boundary. If an incoming light
ray arrives at the boundary at any angle greater
than the critical angle, it will be refl ected back
into the original medium instead: the boundary

acts as a perfect mirror.
All in all then, despite the

various wrinkles, refraction and
refl ection are both governed by

fairly simple mathematical
equations on vectors, and

we model the light rays by vectors. Converting
vector maths to code is quite straightforward.

Of course, there’s something more to light
and transparent objects that makes it even more
interesting from a photorealistic viewpoint
and also harder to compute the path a light
ray travels (and hence the colour of the pixel
in the viewport). The issue is that a light ray
hitting a transparent object that also has a
certain amount of refl ectivity will be split.
Part of the light ray will be refl ected (and
we know how to deal with that) and part of
the light ray will be refracted into the object
(and we know how to deal with that). In other
words, our computations will be doubled for
each of these types of objects. If the two parts
of that split ray go on to meet other partially-
refl ective, partially refractive objects, the rays
will get split again. Getting this effect right
gives raytraced pictures the extraordinary
photo-realism we see (and also the long
rendering times).

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

Instead of viewing the surface of an object such as

a sphere as being all one colour (except as modifi ed

by the shading algorithm), we could instead map a

texture onto the object. The texture could be

something like stone, wood, marble, or water

ripples – any semi-random look that evokes a

type of material. It could be a single image that’s

repeated across the surface of the object or it could

be a randomised algorithm that mimics the texture

desired. The shading algorithm works in exactly the

same way, but the colour of the point intersecting

the light ray will be determined by the texture

itself and how it’s mapped onto the object. Modern

GPUs have special texture rendering hardware that

performs this kind of mapping extremely quickly. ■

Mapping textures

1 Figure 4: A raytraced pentomino

solution with refl ective spheres.

5 Figure 3: How refl ection

and refraction work.

PCP295.theory 83 13/4/10 4:26:1 pm

