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Painting a scene with light rays is one of the most fascinating parts of graphics
theory. Find out everything you need to know

R
endering views of imaginary worlds 
on a computer screen is an intriguing 
pursuit. There are many techniques 
used depending on the requirements 

of the output medium (games and movies, for 
example, generally use different techniques). 
The technique that produces the most lifelike 
results is raytracing, since it renders the images 
using realistic lighting and shadows, as well as 
taking into account refl ections and refractions 
of the light.

Over the past couple of decades – perhaps 
even longer than that – computer graphics 
have become ever more prevalent in movies. 
It seems that not a week goes by without the 
release of another digitally enhanced production 
that redefi nes the art of placing computer 
graphics centre-stage on the big screen. In 
2009, we were treated to fi lms like Up from 
masters of digital animation Pixar, and Avatar 
from James Cameron. Both of them relied on 
computer-generated graphics like never before. 
I, like many, am fascinated with the ‘behind 
the scenes’ videos you can sometimes fi nd 

online, or with the interviews with the 
producers and animators that attempt to 
scratch the surface of what’s required to 
render the graphics for these movies. 

It’s not just movies, either. Modern computer 
games – admittedly in close collaboration with 
the GPU – continue to refi ne the art of smooth 
3D graphics display. But before we discuss the 
techniques involved in this area, it’s helpful to 
defi ne the term ‘3D graphics’ in this context. 
I’m not referring here to graphics that need 
cinema-friendly glasses, but instead to the 
rendering of a 3D scene on a 2D window: your 
screen. In other words, items that are behind 
or are cut off by closer items in the scene won’t 
be seen on the screen.

Raytracing is one method for rendering a 
3D scene on a fl at screen, and in particular a 
scene with lots of complicated light interactions. 
Where is all this light coming from? Well, there 
might be several light sources in the scene; there 
might be mirrors and other refl ective surfaces 
(not necessarily planar); and there may also be 
transparent or translucent objects. Ray tracing 

assumes that we can follow (that is, trace) 
individual light rays as they bounce around 
the scene, hence its name.

Which rays should we trace?
As with any kind of process that creates a 
computer-generated image, we must have a 
scene that we are trying to render. The scene 
will consist of a collection of objects – some 
simple shapes like spheres and cubes; some 
more complex and free-form, perhaps with 
textured surfaces. The objects will all be 
three-dimensional and have depth, as well as 
length and breadth. The renderer will assume 
a particular viewpoint looking at the scene, 
which we can call the ‘eye’ or the ‘camera’. The 
camera will be looking at the scene through a 
viewport or window. The image we create will 
be the view of the scene at that window (Figure 
1). This is a little different from how your eye 
or a real camera works, where the image is 
projected behind the lens.

In raytracing, we trace the rays of light 
from the scene and fi nd out where they hit the 3
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camera. But 
how do we know 
which ones those 
are? The answer 
is to look at the 
problem in reverse: 
simulate the rays as leaving the 
camera, passing though a pixel in the 
viewport, and then work out where in the 
scene that ray came from. We can plot which 
objects it hits and what the interactions are, 
maybe following that ray back even further in 
the scene. The colour of the pixel will be some 
combination of the objects the ray bounced off. 

Bouncing light rays
Let’s get a little more precise about all this 
‘bouncing’. Look at the wall wherever you are. 
It’s a solid object and you can’t see through it. 
It has a colour, too. Mine’s a light yellow. Why 
do I see it as yellow? Because the sun is shining 
on it (we assume the sun puts out light of all 
wavelengths) and the wall refl ects light of 
that particular wavelength or combination 
of wavelengths, and absorbs all the other ones. 
So, yellow objects refl ect yellow light; that’s 
why they’re yellow. White objects refl ect all 
wavelengths, whereas black objects absorb all.

So, you might ask, why are white objects 
white and not a perfect mirror, which of course 
refl ects all light too? The answer is that white 
objects scatter the light due to imperfections 
in the surface of the object, whereas mirrored 
surfaces refl ect the light evenly. We can make 
a simplifying assumption to begin with: that 
only mirrored surfaces refl ect light from 
somewhere else in the scene (as well as from 
the light sources) and other objects merely 
‘emit’ light of a particular colour – provided 
that they’re being illuminated, of course.

We’ll leave refl ections for a moment and 
concentrate on the colour of opaque objects, 
since this is a good point to discuss shadows 
and shading. Raytracing has to take into 
account both of these in order to make the 
scene more realistic. 

Shadows are fairly simple. A shadow is cast 
if a ray of light from the source cannot reach 
the area in question. Figure 2 shows two rays 
from the eye hitting an object. The top ray hits 
the object at a point from which a line can be 
drawn to the light source without hindrance. 
The bottom ray hits the object at a point from 
which a straight line cannot be drawn to the 
light source: the object itself gets in the way. 
The bottom point is then in shadow.

Shading, on the other hand, is more subtle. 
The way to think of shading is as the angle 
that rays from the source hit the surface of 
the object. If the angle is 0°, the light source 
is directly ‘above’ the object, and the point gets 
the full effect of the illumination. If the angle 
is greater than 0° – say, 45° – the point is tilted 
away from the light and thus doesn’t get the 
full illumination. As the angle increases 
towards 90°, the brightness decreases, until 
at 90° exactly the rays of light just graze the 
surface and give no illumination.

Modelling shadows
We can model this effect pretty realistically 
by using the cosine function. When the light 
is perpendicular to the surface, the angle is 0, 
and the cosine of it is 1.0. As the angle increases, 
the cosine of the angle decreases. This is initially 
a fairly slow transition, but there’s a rapid drop 
off as the angle increases past 60 degrees. When 
the angle is 90 degrees, the cosine is 0.0. This 
method of allowing for shading is known, 
unsurprisingly, as cosine shading.

Although this all seems very rigorous 
and mathematical and accurate, it actually 
produces some images with very harsh black 
shadows, as if they were produced on the moon. 

Spotlight on… POV-Ray
POV-Ray (Persistence of Vision Raytracer) is an 

open-source, free raytracing program. It is quite 

extraordinarily powerful and produces some 

incredible images, some of which can take 

several minutes (or even hours) to render. 

POV-Ray comprises two parts: a complete 

programming language to describe a scene, 

the light sources, the camera position and 

the various solid objects that form part of 

the scene (as ways to merge or join them); 

and the renderer that takes a description 

written in this language to produce the fi nal 

ray-traced image. It’s a great way to explore 

what’s possible with raytracing.

I played around with POV-Ray to see if I could 

produce an interesting image. The result is 

Figure 4, where I show a solution to the 6 x 10 

pentomino puzzle we discussed last issue, built 

with translucent pieces hovering in the air – the 

‘U’ about to be placed – and then two hovering 

shiny spheres nearby refl ecting the solution 

(and each other). Notice the shadow on the 

ground from the main light source is coloured, 

since the pieces are slightly transparent. 

You can download POV-Ray from www.

povray.org or fi nd it on your SuperDisc. You 

can see the source for this image at www.

tinyurl.com/RayPentomino. ■

viewport. If you think of the viewport as being 
a rectangle of size 1,024 x 600 pixels (the size 
of the screen on the netbook I’m using to type 
this) then our job is to work out the RGB colour 
value of each of the 600,000-odd pixels on the 
screen by tracing light rays from the scene 
towards the camera.

Actually, if you think about it, that’s a 
pretty daunting task. Suppose we have a single 
light source behind the camera illuminating 
a refl ective sphere hovering over an infi nite 
chessboard (the classic raytraced image). 
Light rays from the source propagate in all 
directions. Those that shoot off behind the 
camera we’ll never see. The only light we do 
see is, in effect, shooting out from the source 
in a cone. Much of the light in the scene bounces 
off the sphere away from the viewport. Trying 
to simulate all the light rays coming out of the 
light source would be computationally infeasible 
as well as a waste of time: the vast majority of 
them will hit parts of the scene that aren’t visible 
from the camera or will be refl ected elsewhere. 

To improve our computational performance, 
we should, in effect, only simulate and trace 
those light rays that are guaranteed to hit the 
viewport at the right angle to actually enter the 

1 Figure 2: When shadows occur with raytracing.

1 Figure 1: The terminology of raytracing.
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The reason for this is that, in the real world, 
air helps to scatter light, making it softer. There 
are other effects at work too: light scattered 
from coloured objects does illuminate other 
surfaces, despite our simplifying assumption. 
As a result, raytracing programs tend to use 
a given value for ambient light or background 
illumination. In this way shadows are never 
plain black, but are actually illuminated by a 
general ‘glow’, allowing you to see some detail 
in the shadows. The ambient light is usually 
defi ned by a small positive value, say 0.1 or 
0.2, and the light for shading (diffuse light) is 
defi ned as 1.0 minus the ambient light value. 

The colour value, then, for a point on a 
coloured object is the actual colour multiplied 
by the sum of the ambient light and cosine 
shading using the diffuse light.

Getting refl ections right
Let’s now talk about refl ection. I’m sure you 
remember the rules for refl ection from school: 
the refl ected ray has the same angle from the 
perpendicular (the normal vector, if you want 
to be precise) as does the incoming ray. And 
that’s it – pretty easy (Figure 3, part 1).

Refraction is a little more 
complicated, but not by 
much. Here we assume 
that the incident ray hits 
the boundary of an object 

that has some transparency (for example, glass 
or water). Because light has a different speed in 
different materials, rays will change direction 
slightly (Figure 3, part 2). We’ve all seen this 
effect when looking at a straw in a glass of 
water: it appears that the straw is bent at the 
surface of the water. 

The amount of bending is a function of 
the refractive indices of the two materials in 
contact. Air, for example, has a refractive index 
of about 1.0003, whereas water has a refractive 
index of 1.33. Snell’s Law states that the ratio of 
the sines of the angle of incidence and refraction 
is equal to the reciprocal of the ratio of the 
respective refractive indices. What this means 
in practice is that light is bent towards the 
perpendicular if the ray is travelling from the 
material with the lower refractive index to that 
with the higher. The situation is true in reverse 
when light travels from the higher to the lower 
refractive index.

That brings up another wrinkle to refraction 
that also must be taken into account. When 
light travels from, say, water to air, it bends 
away from the perpendicular. There will be 
an angle, called the critical angle, at which the 
incident light ray will be refracted at exactly 
90° along the boundary. If an incoming light 
ray arrives at the boundary at any angle greater 
than the critical angle, it will be refl ected back 
into the original medium instead: the boundary 

acts as a perfect mirror.
All in all then, despite the 

various wrinkles, refraction and 
refl ection are both governed by 

fairly simple mathematical 
equations on vectors, and 

we model the light rays by vectors. Converting 
vector maths to code is quite straightforward.

Of course, there’s something more to light 
and transparent objects that makes it even more 
interesting from a photorealistic viewpoint 
and also harder to compute the path a light 
ray travels (and hence the colour of the pixel 
in the viewport). The issue is that a light ray 
hitting a transparent object that also has a 
certain amount of refl ectivity will be split. 
Part of the light ray will be refl ected (and 
we know how to deal with that) and part of 
the light ray will be refracted into the object 
(and we know how to deal with that). In other 
words, our computations will be doubled for 
each of these types of objects. If the two parts 
of that split ray go on to meet other partially-
refl ective, partially refractive objects, the rays 
will get split again. Getting this effect right 
gives raytraced pictures the extraordinary 
photo-realism we see (and also the long 
rendering times). 

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express. 
feedback@pcplus.co.uk

Instead of viewing the surface of an object such as 

a sphere as being all one colour (except as modifi ed 

by the shading algorithm), we could instead map a 

texture onto the object. The texture could be 

something like stone, wood, marble, or water 

ripples – any semi-random look that evokes a 

type of material. It could be a single image that’s 

repeated across the surface of the object or it could 

be a randomised algorithm that mimics the texture 

desired. The shading algorithm works in exactly the 

same way, but the colour of the point intersecting 

the light ray will be determined by the texture 

itself and how it’s mapped onto the object. Modern 

GPUs have special texture rendering hardware that 

performs this kind of mapping extremely quickly. ■

Mapping textures

1 Figure 4: A raytraced pentomino 

solution with refl ective spheres.

5 Figure 3: How refl ection 

and refraction work.
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