rn to solve

pentominoes

Find out how the theory behind a kid's toy can illustrate some deep computer science

entominoes, a simple educational

game, can reveal some surprisingly

deep computer science. Although the

first backtracking solution to the
puzzle was implemented in 1958, Donald
Knuth devised an entirely new way of looking
at the problem in 2000. This method is now
called the Dancing Links algorithm (or, more
usually, DLX).

A pentomino set consists of 12 different
pieces, each representing one of the ways of
joining five squares along their edges to form a
unique shape. Figure 1 shows the complete set,
together with each piece’s usual name: aletter
of the alphabet that most closely resembles it
(F,,L,N,P, T,U,V,W, X, Y, and Z). Since
there are 12 pieces, each five squares in size,
you could investigate solutions to fitting them
allin a 3 x 20 rectangle, a 4 x 15 rectangle, a
5 x 12 rectangle or a 6 x 10 rectangle, as well
as other more fanciful shapes.

Back in my early teens I was given a plastic
set of pentominoes arranged in a 6 x 10 box,
presumably for my birthday or Christmas.

PCP294.theory 81

i I'seem to remember spending an inordinate
: amount of time over several months trying
i to find all the ways of arranging the pieces in

the box. There are 2,339 different ways, not
counting rotations or reflections. I even used
a notebook with squared paper to record the

i permutations I discovered. (Although I still
i have that pentomino set, the notebook has
i been lost in the mists of time.) Needless to

say, I did not find all 2,339 methods.

Exploring the methods

. Figure 2 overleaf shows a solution for the 6 x 10
¢ box (this is the solution I carefully kept written
i down with the box, since not knowing how to

put the pieces back would have been
embarrassing). If you look carefully, you'll see
that you can immediately generate another by

i swapping over the T and F.

After playing around with the pieces for a

while, the natural question to ask (well, natural :
places and orientations for the Fina 3 x 20
¢ board, 48 for the I, 136 for the L, and so on.
¢ Many of these will be completely illegal (for

if you're a programmer) is this: how can I write
a program to generate all the solutions to a
particular puzzle? Let’s look at what might be

needed for a 3 x 20 rectangular board (there
are two solutions to this particular puzzle,
not counting rotations and reflections).

A first idea might be the following
algorithm: take the pieces in alphabetical
order, F to Z. Place F somewhere on the empty
board and mark off the squares it covers. Place
the I on the board, making sure that it doesn’t
cover any of the already covered squares, and
mark off the squares it covers. Place the L
likewise. At some point you'll find that you

i won't be able to place another piece, so you

¢ should then backtrack and move one of the

i already placed pieces to another position
(perhaps by rotating or flipping it over) and
then try again. Continue this process, with the
© realisation that you might have to backtrack

i several times at any one check, and eventually
you’ll discover all permutations.

The big problem with this solution is that
it will take some time. There are 144 different

PCPlus 294 May 2010 | 81

16/3/10 10:26:56 am

>

Make it

ns of the link idea

The ‘unlink a node/relink the same node’ idea was
first used by Hitotumatu and Noshita to speed up
Dijkstra’s algorithm for solving the N queens chess
problem. This problem was first proposed in 1848
as the eight-queen problem: put eight queens on a
chessboard such that no queen can capture any
other (no two queens can be in the same row,
column or diagonal). Dijkstra published a solution
using then-unfamiliar structured programming
methodology and Hitotumatu and Noshita made it
twice as fast by using the unlink/relink trick.

example, the F cannot appear right at the edge
of the board, since in doing so you will always
leave at least one empty square). So, in all you'll
be trying out 144 x 48 x 136 x ... different
permutations. Not very fast at all.

A better implementation might be to switch
it around a little. Consider the square at the
upper left of the board. Select a piece that
covers it and then mark off the remaining four
squares also covered by this piece. Find the
next uncovered square (for this type of board,
because it’s so narrow, it'll be better to search
down the narrow axis rather than the long
axis). Try to find a piece that can be placed
legally there. If there isn’t one, backtrack again
and change the piece you've already placed.
Sometimes you might have to backtrack
several steps.

Because you're more likely to identify
impossible solutions more quickly (for example,
there are only two possible ways to place the F
to cover the top left square and both are shown
to be illegal when considering what to place in
the next square downwards), you’ll find that
this algorithm is much more efficient at
identifying valid solutions.

If you try and implement either of the above
solutions, though, you'll probably find yourself
calculating the positions (and which squares
are covered by each of the individual pieces)
over and over again. It would be better to
calculate them once and then put the values
into a table that you can refer to as you try out
various placements.

Before we discuss the best data structure
for that table, let’s step back for a moment and
consider what’s known as the Exact Cover
Problem. Imagine the following scenario.
You're given a matrix of ones and zeros; that

¥ Figure 1: The 12 pentominoes.

Lo BT
VYWt

F |

82 | PCPlus 294 May 2010

PCP294.theory 82

A Figure 2: One of several possible solutions to the 6 x 10 pentomino puzzle.

is, where the cells contain either 1 or 0. The
first part of Figure 3 shows such a matrix. The
problem you have to solve is to work out which
rows of the matrix form a set that contains
exactly one 1in each column. There may be no
such set of rows, there may be exactly one or
there may be more than one. A solution to this

i problem is known as an ‘exact cover” a set of
i rows that exactly covers the columns. Take a
{ moment to work out the exact cover for Figure 3.

Solving a matrix
Despite the ease with which a visual inspection
will provide the answer with this small matrix
(rows 2, 3, and 5), this problem gets much
harder (it’s ‘NP-complete’ in computer science
terms) the more rows and columns there are.
The algorithm for solving it is recursive.
Let’s look at Figure 3. You're given a matrix.
Choose a column (say the first). Choose a row
such that the cell at the intersection of the
column and row is a 1 (let’s go for row 4). Add
that row to our solution. Now since that row
will have a 11in column 1, we must remove all
the other rows that have a 1 in column 1 (that

i would be row 5). Not only that, but we must

also remove all the rows that have a 1in the
same column as this chosen row. At row 4 we

hit the jackpot: we can get rid of row 5 (again),

row 2 and row 6. We remove row 4 (since it’s

in our possible solution) and the three columns
i that row 4 covered (there’s no need to recheck

them because we've already
covered them). Our matrix now
looks like the
second part
of Figure 3.

We do the
same thing with
this reduced

matrix. We choose row 3 as our row since it
intersects with column 2 in a 1. Unfortunately,
we then have to delete row 1 as well since
there’s a clash in column 6, meaning that
columns 5 and 7 never get covered and we
failed to get an exact cover.

So we backtrack. Maybe choosing row 3
was the mistake. However, there’s no way to
cover column 2 in that particular reduced
matrix, and so we must backtrack to our choice
of row 4, made right at the beginning. Since
that choice led to no exact cover, we see if
we can make another choice of row to cover
column 1. This time, it’s row 5.

Selecting row 5 means we get rid of row 4
(again) and 1, as well as columns 1, 3 and 7
(since row 5 covers them). We're then left with
the reduced matrix shown in part 3 of Figure 3.

Here we make the choice of row 3, which
removes row 6 as well as columns 2 and 6. And
this, as I'm sure you can see, leaves us with row
2 covering the remaining two columns. (To be
pedantic, we then select row 2, which removes
the final two columns as well.) Hence our exact
cover solution is rows 2, 3 and 5.

That’s all fine and dandy, but what does
this exact cover problem have to do with
pentominoes? In particular, how does it
help with defining the table of where a piece
can be placed and which squares it covers?

The answer is to set up the puzzle as an
exact cover problem. Let’s define the columns
first: the initial 12 columns will be the
pentomino pieces, one column for each piece.
The next 60 columns will be one per square
from the board: counting from top left across
the top row (1 to 20), then the second row (21
to 40), then the final row (41 to 60).

Now we can define each row as being a
single piece placed on the board in a particular
position. Since it’s a single piece, we'll have a 1
in only one of the first 12 columns, according
to which piece it is. Now we put a 1in each
column of the next 60 that corresponds to the
squares covered by the piece in that position.
For example, if we take F in its ‘normal’
orientation and place it abutting the left side,

16/3/10 10:26:59 am

st | |1234867
110000011
20001100
(0100010
41011000
5:(101 0001
/0101010

part 2 i2557
E R I s
31010

part 3 12458

20110
31001
B: (1101

A Figure 3: An exact cover problemiin part 1;
partial steps to a solution in parts 2 and 3.

the row will have a 1 under the F column, and
a1 under columns for squares 2, 3, 21, 22, 42.
All the other 66 columns for that row will be 0.
(In fact, every row we add to the matrix will
contain six 1s and 66 0s.)

How many rows will there be? To find out,
we sum all the different ways we can place
each piece. For example, for F there are 18
positions for each of its orientations and eight
orientations, making 144 distinct positions. I
did the maths and came up with the following
number of positions for each piece: F: 144, I:
48, L:136, N: 68, P: 220, T: 72, U: 110, V: 72,
W: 72,X:18,Y: 136, Z: 72. In other words, the
puzzle matrix has 1,168 rows. That is one huge
matrix, but note that it’s also very sparse: only
lin12cellsisal.

Now we have to find the exact covers for
this 72 x 1,168 matrix. Because we haven’t
done anything to avoid solutions that would be
rotations or reflections of other solutions, we’ll
find four times as many solutions as expected.

The fun part is how to solve the exact cover
problem efficiently. It’s a non-polynomial

Improving performance

We can make a simple change to DLX to improve
its performance. Instead of choosing a column at
random to cover, we should choose them in some
kind of order. The best method is to choose the
column with the fewest cells. In any backtracking
type algorithm, choosing a subproblem that has
fewer branches means that backtracking will occur
earlier rather than later. Since backtracking is not
‘forward motion’ in finding a solution, we should
minimise it as much as possible. In fact, by using
this tweak in Sudoku DLX, most easy/medium
puzzles are solved without backtracking at all.

PCP294.theory 83

Make it

Spotlight on... Solving Sudoku

The DLX algorithm can also be used to solve
Sudoku puzzles. The rows in a Dancing Links
matrix for Sudoku are the exhaustive list of all
possible digits in all possible cells. Since there
are 81 cells, each containing one of nine possible
values, we'll have 729 rows. Name each row in
the format ‘[D, R, FI' where D is the digit, R is the
rank (the row in the Sudoku grid), and F the file
(the grid column).
View the columns as being constraints.

There are four kinds of constraints to how
we can fill in a Sudoku grid.
1. Each cell must contain exactly one digit.
2. Each digit must appear in each rank

exactly once.
3. Each digit must appear in each file

exactly once.

problem (probably exponential), so for a much
larger matrix it’ll get very hard very quickly.
i However, for this sparse, mid-sized matrix it

can be solved pretty quickly.

Dancing links

The algorithm to use is the one I mentioned
above (Donald Knuth calls it Algorithm X).
However, keeping track of all the rows and
columns you're removing or adding back - the
housekeeping, if you like - is quite complicated.
To aid in this housekeeping issue, Knuth came
up with a refinement that he called Algorithm
DLX, standing for something like ‘Dancing

Links implementation of Algorithm X. You can

get the paper from www-cs-faculty.stanford.

edu/~knuth/preprints.html - it’s paper P159.

Consider a doubly linked list where each

© node has a ‘Next’ and a ‘Prev’ reference to the
i next and previous nodes in the list. Then, in
i order to delete a given node X, all we have to

do is set X.Next.Prev’ to X.Prev and X.Prev.
Next’ to X.Next. X will no longer be in the
linked list. However, providing that we don’t
alter X in any way, we can just as easily add it
back into the list: set both X.Next.Prev’ and
‘X.Prev.Next’ to X. So although the linked list
has no more references to X, X itself still has
‘knowledge’ of where it was in the list.

: A Figure 4: A linked list tapestry for the exact
: | coverproblem demonstrated in Figure 3.

4. Each digit must appear in each box
exactly once.

Each constraint will be represented by columns.
Looking at item 2, we have nine possible digits
in nine possible ranks — 81 possible pairs, and
therefore 81 columns. In each column we puta 1
in each cell that intersects the digit/rank pair for
that column. So, for example, if we're filling in
the column for digit 2, rank 5, we'd put a 1 in the
rows named [2,5,1], [2,5,2], and so on. The same
argument goes for the other constraints as well:
each 81 columns, 324 columns in all.

Now the matrix is set up, we can remove
the rows and columns that correspond to the
Sudoku puzzle we're trying to solve and find
the remaining exact cover.

That'’s all very clever, but so what? Well,

consider our 72 x 1,168 sparse matrix. How

i would we represent that in memory? We could

use a standard matrix of boolean values, which
would take 84,096 cells, but such a structure

is too rigid. Better to use a linked list of cells
containing a 1 along each row. Knuth went
even further: not only are the ‘I’ cells joined

in a linked list along each row, but they are
equivalently joined up and down in a linked
list as well. The matrix becomes a tapestry of
linked lists, with each ‘1’ cell having a link to its

left, right, up and down neighbouring ‘T’ cells.

‘0’ cells are not stored at all.

Figure 4 shows the exact cover problem
matrix that we saw in Figure 3 as a linked list
matrix. Each column has a header cell and the
header cells have their own single header cell.
The lists are circular lists: the links off to the

left join at the right (and vice versa) and the links

off the bottom join at the top (and vice versa).
Now that we have this woven data structure
of linked lists, we can make use of the remove/
add-back-again idea that I just introduced. To
cover a column we unlink it from the column

¢ header’s linked list using our code. We can

easily unlink the rows it contains by the same
method. If we need to backtrack, we can add
the rows back, in reverse order, and finally
add the column back in. The housekeeping
of Algorithm X is done through this property
of deleted nodes ‘knowing’ where they came

© from. We don’t need to have any special

additional data structure to hold the removed
rows and columns: the nodes themselves keep
track of all that automatically.

In essence, Algorithm DLX finds an exact
cover if, during a recursive call, the header of

. header’s node points to itself. It fails to find one

if there are still column headers but they have
no rows; we shall then need to backtrack. PCP

i Julian M Bucknall has worked for companies

ranging from TurboPower to Microsoft and is
now CTO for Developer Express.

Jeedback@pcplus.co.uk

PCPlus 294 May 2010 | 83

16/3/10 10:27:1 am

