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How to categorise algorithms by their manner of execution

W
hen we need to select an 
algorithm for a particular 
purpose, we should pay attention 
to its runtime characteristics: 

how fast it is; how much memory it uses; 
whether there’s a worst case for the algorithm’s 
execution speed; and so on. All these answers 
are expressed with the big-Oh notation, which 
I’ll describe later.

A common abstract data structure that’s 
used all the time in programming is the 
dictionary or associative array, which is 
sometimes known as a map. I call it an abstract 
structure because it can be implemented in 
myriad different ways, but it always has a 
specii c interface. We’ll use the dictionary to 
investigate the runtime efi ciency of various 
algorithms that can be used to implement it.

But i rst, a dei nition: a dictionary is a 
structure that holds name-value pairs. A name-
value pair is an object that has a name – that’s 
used both to describe its value and as a key to 
i nd it – and a value, which can be anything 
at all. The classic example is a real-world 

dictionary, where the name is a word and its 
value is the word’s dei nition. However, don’t 
limit yourself to assuming the name is always 
some kind of text string. In reality, names can 
be integer values, bit strings, 128-bit GUIDs, 
dates or anything at all. That said, it’s helpful 
to assume that they’re text strings for now.

The dictionary has various operations 
that dei ne its external interface. There’s 
the ‘Create’ operation, which creates a new 
dictionary, and the ‘Destroy’ operation, which 
releases any resources the dictionary is using 
and destroys the structure. A dictionary can 
only be used after ‘Create’ has been called, and 
once ‘Destroy’ is executed, it no longer exists. 
Since these operations are only used once each 
per dictionary, they won’t have much effect on 
the overall runtime and so we won’t discuss 
them any further.

When given a name, ‘Find’ will search for 
the name-value pair that matches and return 
its value or an error if the name is not found. 
‘Exists’ will do the same, except it will merely 
return true or false according to whether the 

name is present or not. Since they’re virtually 
identical, apart from what they return, we’ll 
ignore ‘Find’ from now on.

Finally we have ‘Insert’ and ‘Delete’, 
which do what you’d expect: add a new name-
value pair to the dictionary (returning an error 
if the name already exists), and remove the 
name-value pair that matches a given name, 
respectively. In general, ‘Delete’ won’t return 
an error if the name is not found, and sometimes 
‘Insert’ will merely replace the value if the 
name already exists.

Now that we have our abstract data 
structure, let’s investigate i rst how to 
implement it and second analyse the 
efi ciency of our implementations. We’ll 
look at a total of four implementations.

Name-value pairs
The i rst implementation is the most obvious: 
use an array of name-value pairs. ‘Exists’ is the 
i rst operation to think about. In essence, to see 
whether the given name is present, you would 
check every pair in the dictionary sequentially 3
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O(1) operation. Hold on there though – we 
irst have to search the array to ind out if the 
name is already present or not. ‘Insert’ then 
degenerates to O(N), just like ‘Exists’. We 
get no beneits at all from the constant, 
quick, add-it-to-the-end operation; we 
still have to search.

‘Delete’, as I’m sure you can see, is at least 
O(N) as well – we have to do the search. 
There’s something else about ‘Delete’ that we 
have to take into account: we have to physically 
remove the name-value pair from the array. 
The simplest way of doing this is to simply take 
the inal pair in the array and put it in the slot 
vacated by the pair that was removed: a 
constant O(1) operation. So, overall, ‘Delete’ 
is O(N); the search time will swamp the move- 
an-item time.

Sorted pairs
Let’s move on to the second implementation. 
This one is again an array, except this time 
we maintain the pairs in sorted order. This 
has the assumed requirement that the names 
are sortable and that, given any two unequal 
names, we can say that the irst is smaller or 
greater than the second.

We’ll start off by analysing ‘Exists’ again. 
The array is in sorted order, so we can use 

binary search to try and ind the name-value 
pair that matches. With binary search, we look 
at the middle item in the array. If it’s the one 
we want, we stop. If the one we want is less 
than this middle item, we know that, if it’s 
present at all, it’ll be in the irst half of the 
array. If the one we want is greater than the 
middle item, we know it will be in the second 
half. We repeat this process with the half 
array we selected. We’ll either ind the item 
immediately again, or we’ll have reduced the 
number of items we have to search to a quarter 
of the array. Ditto the next step, except we 
reduce the space we have to search to an eighth 
of the original array. And so on.

Again, consider the doesn’t-exist case. Say 
we start out with an array with 1,023 items. 
After one step, we’ll have discarded one item 
and will have identiied a subarray of 511 items 
for the next step. After this next step, we’ll have 
reduced the search space to 255 items, and so 
on. At the 10th step we’ll have a tiny array of 
just one item, which we can easily compare. 
So all in all, we’ll have made 10 comparisons 
to ind out that the given name is not present. 
What’s so special about 10? Well, it’s the 
logarithm to base two of 1024 (that is, 2ˆ10 
= 1024). Again, without being too rigorous 
mathematically, we say ‘Exists’ is O(logN) 
when the name isn’t present.

Think of O(logN) this way: if it takes a 
particular length of time to ind out that a 
given name isn’t present in a sorted array of 
1,000 items, it will only take twice as long for 
an array of 1,000,000 items. If you square the 
number of items, you double the time taken. 
This is an extremely signiicant result, showing 
the importance of binary search.

Spotlight on… Radix trees
Radix trees offer a further data structure that 

can be used for a dictionary. A radix tree stores 

prefixes to keys rather than complete keys in its 

nodes, and each node can have many children. 

A key is then found as a complete path through 

the tree from root to leaf – at each step down 

the tree, you compare another small part of the 

name to the next node. 

Figure 2 shows an example radix tree 

storing a small set of words. In searching for 

‘hostess’, we follow the left link from the root, 

matching host, then follow the middle link 

matching the ‘e’ and finally matching the ‘ss’ 

in the right node.

Unlike the other data structures we’ve looked 

at, the efficiency of a radix tree doesn’t depend 

on the number of name-value pairs, but instead 

on the length of the keys. All operations are 

essentially O(k), where k is the maximum name 

length in the radix tree. This can be greater than 

the balanced binary tree’s O(logN), for example, 

but in practice we find that the comparisons 

needed in a binary tree are also significant, so 

the radix tree can be a viable alternative. n

and stop when you found it. If the given name 
isn’t present, you would compare the name of 
every name-value pair to the given name. The 
more pairs there are, the longer it would take, 
but you can be even more precise than that. 
Suppose there were N pairs in the dictionary 
and each comparison took the same (constant) 
length of time – say t. Then it would take tN 
time units to ind out the given name wasn’t 
present. Another way of putting this is that 
the time taken for the nonexistence check 
is proportional to N. In computer science, 
without going into too much rigorous 
mathematics, we say the runtime eficiency 
is O(N), pronounced ‘big-Oh of N’, although 
you can read it as ‘is proportional to N’.

So if it took so many seconds to ind out 
that a given name wasn’t in a dictionary of 
1,000 pairs, it would take twice as long for a 
dictionary of 2,000 pairs, and 10 times as 
long for a dictionary of 10,000 pairs.

What if the given name was in the 
dictionary? What could we say then? Well, it 
could be that the matching pair was the irst 
item checked. In that scenario, we say the best 
case eficiency for ‘Exists’ is O(1), which you 
read as ‘is constant’ (in other words, it doesn’t 
depend at all on the number of items in the 
dictionary). But, of course, for that to happen, 
you’d have to be extremely lucky. You could 
be completely unlucky and be looking for the 
inal item. Here the worst case eficiency is 
O(N) – the time taken would be proportional 
to the number of items in the dictionary. 

On average, though, if you searched for 
every name in the dictionary, the eficiency 
would be O(N/2). Now comes the fun bit with 
big-Oh notation: since it essentially means 
‘is proportional to’, you can take the 1/2 (a 
constant) out of the parentheses into the 
implied proportionality constant and say 
that the eficiency is O(N). We say that 
searching through the dictionary-as-array is 
O(N): twice as many items, twice as long.

‘Insert’ is simple: we add the new name-
value pair to the end of the array, a constant 

Back in issue 282, I cited ternary search trees as a 

strong candidate for the data structure behind a 

dictionary. Ternary trees, like radix trees, have a 

runtime efficiency that’s dictated by the length 

of the keys rather than their number, but are much 

easier to implement. Ternary search trees and 

radix trees also have a further benefit: using them 

means you can easily produce a sorted list of 

names in the dictionary, as well as produce a 

prefix list (a list of names with a particular prefix). n

Ternary trees

1 Figure 1: Graphing some common big-Oh expressions (O(N^2) is cut off so we can see the others).

3
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What if the given name is 
present? We can make the 
same analysis as before: best 
case is O(1), worst case is 
going to be the same as not 
inding it: O(logN), and so we say that, overall, 
‘Exists’ is O(logN). 

What about ‘Insert’ and ‘Delete’? Again, 
we have to search for the name, so it would 
seem that they’re both O(logN). But this time, 
consider what we must do to add (or remove) 
the name-value pair. For ‘Insert’, we have to 
make a hole in the array to put the new pair 
in, shufling all the items greater than it along 
by one. For ‘Delete’, we have to shufle the 
remaining pairs to close up the hole vacated by 
the removed pair. If we’re lucky, in both cases, 
we don’t have to move any items (that is, best 
case is O(1)); if we’re unlucky we have to move 
all of the remaining pairs (that is, worst case 
is O(N)). On average, it’s O(N) for all the 
shufling we need to do. Since O(N) is bigger 
than O(logN) – for very large values of N the 
(in)eficiency of the moving of the items will 
swamp the eficiency of the search – we ignore 
the smaller proportionality and just use the 
larger one. We say ‘Insert’ and ‘Delete’ are 
both O(N).

Hash table
Now for the next implementation: the hash 
table. Without going into full detail, we have 
an array as the basic data structure. 

Again, we analyse ‘Exists’ irst. To ind an 
item in a hash table, we hash the given name 
to produce an index into the array. The hash is 
produced by a randomising type function that 
takes the name, chops it up and combines the 
parts to produce an integer value. That integer 
value is then reduced to a possible array index 

value by use of the mod operator. The hash 
function is designed so that similar names 
produce very different hash values.

Best case is that ‘Exists’ is O(1). That is, we 
create the hash for the given name, convert it 
to an index, go to that element in the array, 
and the pair we need is there and matches. 
No matter how many items are in the array, 
that process is constant. (Actually, the hash 
function is usually O(k) where k is the length 
of the name, but we’re ignoring that for now.)

What about worst case? Well, in practice 
we’ll ind that many names will hash to the 
same array index value. These are called 
collisions and we need to implement a collision 
resolution strategy to deal with them. The 
simplest is known as chaining, where we chain 
the name-value pairs as, say, a linked list at 
each array element. In this case, once we’ve 
calculated the index, we then do a sequential 
search through the chain at that index. 

To ensure that the chain is never too long, 
hash tables grow themselves periodically when 
their load factor (the number of pairs present 
divided by the number of array elements) 
reaches a particular value. To do this, a new 
array is created, and all the pairs are rehashed 
and inserted into the new array. This ensures 
that chains never grow beyond a few items, 
say ive or 10. Since this isn’t dependent on the 
total number of items, it’s still constant and we 
say ‘Exists’ in a hash table is O(1) on average. 

‘Insert’ is a more dificult operation to 
analyse. On the face of it, it’s O(1) – both the 
‘Search’ and ‘Add’ functions are constant time 
operations in general – but every now and then, 
a reorganisation will take place on an insertion 
operation. In general, hash tables are written 
such that they double in size when they grow. 
This is a O(N) operation, but we can amortise 
it over all previous insertion operations, so that, 
overall, ‘Insert’ remains O(1). Best case then is 
O(1), worst case is O(N), amortised case is O(1).

The same types of arguments can be made 
about ‘Delete’, although in general we tend not 
to shrink a hash table anywhere near as often 
as we make it bigger. ‘Delete’ is then O(1), 
meaning that the amortised use of a hash table 
over all its operations is O(1). There is, of course, 

still that warning that every now and then you 
will hit the O(N) worst case on an insertion.

Binary tree
The next data structure we can use is a balanced 
binary search tree, such as a red-black tree. 
This, like the sorted array version, makes the 
assumption that names can be sorted. 

In a binary tree, the eficiency of search 
operations is O(d), where d is the maximum 
depth of the tree (the number of levels from 
the root of the tree to the furthest leaf). Since 
a perfectly balanced binary search tree is 
equivalent to binary search on a sorted array 
(every link you decide to follow will enable you 
to ignore a whole chunk of the tree), ‘Exists’ is 
on average O(logN). Best case is still O(1), but 
what about worst case? That depends on the 
algorithm used to balance the binary tree. 
Balancing is never perfect but, using red-black 
trees as an example, we can prove that they’re 
constructed such that the longest path is a 
maximum of twice the length of the shortest 
path. If you like, O(2logN). Since 2 is a constant, 
we can take it out, making red-black trees 
O(logN) in the worst case for ‘Exists’.

For ‘Insert’ and ‘Delete’, there’s a lot of 
mathematics that can prove that they’re both 
O(logN) as well. In essence, the search is 
O(logN), and the addition of the new node 
or removal of the old node is O(1) on average.

So, overall, a red-black tree is O(logN) in 
all its operations. Perhaps more importantly, it 
has guaranteed O(logN) time even in the worst 
case. This means that some people will prefer 
to use a red-black tree for their dictionary 
instead of a hash table because they don’t want 
to hit the possibility of O(N) insertion.

From this discussion, you should now have 
a basic understanding of how to read and 
understand big-Oh expressions and how to 
evaluate algorithms and data structures based 
on them. Figure 1 illustrates the runtime for 
various common big-Oh expressions. 
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All of the efficiency results quoted in this article 

are theoretical. They are all of the form ‘for large 

values of N the efficiency is proportional to some 

expression in N’, but make no mention of the size 

of the constant of proportionality. Therefore, 

when deciding on which data structure to use 

in your dictionary, you should profile actual 

code running on your actual data. It’s 

pointless worrying, for example, about the 

efficiency of millions of items in a dictionary 

when you’ll only have 100. n

Profiling

1 Figure 2: A small radix tree 

(using middle dot to indicate 

end of word).
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