
Make it

Theory
workshop

Building an
efficient dictionary

 293 April 2010 81

How to categorise algorithms by their manner of execution

W
hen we need to select an
algorithm for a particular
purpose, we should pay attention
to its runtime characteristics:

how fast it is; how much memory it uses;
whether there’s a worst case for the algorithm’s
execution speed; and so on. All these answers
are expressed with the big-Oh notation, which
I’ll describe later.

A common abstract data structure that’s
used all the time in programming is the
dictionary or associative array, which is
sometimes known as a map. I call it an abstract
structure because it can be implemented in
myriad different ways, but it always has a
specii c interface. We’ll use the dictionary to
investigate the runtime efi ciency of various
algorithms that can be used to implement it.

But i rst, a dei nition: a dictionary is a
structure that holds name-value pairs. A name-
value pair is an object that has a name – that’s
used both to describe its value and as a key to
i nd it – and a value, which can be anything
at all. The classic example is a real-world

dictionary, where the name is a word and its
value is the word’s dei nition. However, don’t
limit yourself to assuming the name is always
some kind of text string. In reality, names can
be integer values, bit strings, 128-bit GUIDs,
dates or anything at all. That said, it’s helpful
to assume that they’re text strings for now.

The dictionary has various operations
that dei ne its external interface. There’s
the ‘Create’ operation, which creates a new
dictionary, and the ‘Destroy’ operation, which
releases any resources the dictionary is using
and destroys the structure. A dictionary can
only be used after ‘Create’ has been called, and
once ‘Destroy’ is executed, it no longer exists.
Since these operations are only used once each
per dictionary, they won’t have much effect on
the overall runtime and so we won’t discuss
them any further.

When given a name, ‘Find’ will search for
the name-value pair that matches and return
its value or an error if the name is not found.
‘Exists’ will do the same, except it will merely
return true or false according to whether the

name is present or not. Since they’re virtually
identical, apart from what they return, we’ll
ignore ‘Find’ from now on.

Finally we have ‘Insert’ and ‘Delete’,
which do what you’d expect: add a new name-
value pair to the dictionary (returning an error
if the name already exists), and remove the
name-value pair that matches a given name,
respectively. In general, ‘Delete’ won’t return
an error if the name is not found, and sometimes
‘Insert’ will merely replace the value if the
name already exists.

Now that we have our abstract data
structure, let’s investigate i rst how to
implement it and second analyse the
efi ciency of our implementations. We’ll
look at a total of four implementations.

Name-value pairs
The i rst implementation is the most obvious:
use an array of name-value pairs. ‘Exists’ is the
i rst operation to think about. In essence, to see
whether the given name is present, you would
check every pair in the dictionary sequentially 3

PCP293.theory 81 17/2/10 3:53:27 pm

Make it Theory workshop

82 293 April 2010

O(1) operation. Hold on there though – we
irst have to search the array to ind out if the
name is already present or not. ‘Insert’ then
degenerates to O(N), just like ‘Exists’. We
get no beneits at all from the constant,
quick, add-it-to-the-end operation; we
still have to search.

‘Delete’, as I’m sure you can see, is at least
O(N) as well – we have to do the search.
There’s something else about ‘Delete’ that we
have to take into account: we have to physically
remove the name-value pair from the array.
The simplest way of doing this is to simply take
the inal pair in the array and put it in the slot
vacated by the pair that was removed: a
constant O(1) operation. So, overall, ‘Delete’
is O(N); the search time will swamp the move-
an-item time.

Sorted pairs
Let’s move on to the second implementation.
This one is again an array, except this time
we maintain the pairs in sorted order. This
has the assumed requirement that the names
are sortable and that, given any two unequal
names, we can say that the irst is smaller or
greater than the second.

We’ll start off by analysing ‘Exists’ again.
The array is in sorted order, so we can use

binary search to try and ind the name-value
pair that matches. With binary search, we look
at the middle item in the array. If it’s the one
we want, we stop. If the one we want is less
than this middle item, we know that, if it’s
present at all, it’ll be in the irst half of the
array. If the one we want is greater than the
middle item, we know it will be in the second
half. We repeat this process with the half
array we selected. We’ll either ind the item
immediately again, or we’ll have reduced the
number of items we have to search to a quarter
of the array. Ditto the next step, except we
reduce the space we have to search to an eighth
of the original array. And so on.

Again, consider the doesn’t-exist case. Say
we start out with an array with 1,023 items.
After one step, we’ll have discarded one item
and will have identiied a subarray of 511 items
for the next step. After this next step, we’ll have
reduced the search space to 255 items, and so
on. At the 10th step we’ll have a tiny array of
just one item, which we can easily compare.
So all in all, we’ll have made 10 comparisons
to ind out that the given name is not present.
What’s so special about 10? Well, it’s the
logarithm to base two of 1024 (that is, 2ˆ10
= 1024). Again, without being too rigorous
mathematically, we say ‘Exists’ is O(logN)
when the name isn’t present.

Think of O(logN) this way: if it takes a
particular length of time to ind out that a
given name isn’t present in a sorted array of
1,000 items, it will only take twice as long for
an array of 1,000,000 items. If you square the
number of items, you double the time taken.
This is an extremely signiicant result, showing
the importance of binary search.

Spotlight on… Radix trees
Radix trees offer a further data structure that

can be used for a dictionary. A radix tree stores

prefixes to keys rather than complete keys in its

nodes, and each node can have many children.

A key is then found as a complete path through

the tree from root to leaf – at each step down

the tree, you compare another small part of the

name to the next node.

Figure 2 shows an example radix tree

storing a small set of words. In searching for

‘hostess’, we follow the left link from the root,

matching host, then follow the middle link

matching the ‘e’ and finally matching the ‘ss’

in the right node.

Unlike the other data structures we’ve looked

at, the efficiency of a radix tree doesn’t depend

on the number of name-value pairs, but instead

on the length of the keys. All operations are

essentially O(k), where k is the maximum name

length in the radix tree. This can be greater than

the balanced binary tree’s O(logN), for example,

but in practice we find that the comparisons

needed in a binary tree are also significant, so

the radix tree can be a viable alternative. n

and stop when you found it. If the given name
isn’t present, you would compare the name of
every name-value pair to the given name. The
more pairs there are, the longer it would take,
but you can be even more precise than that.
Suppose there were N pairs in the dictionary
and each comparison took the same (constant)
length of time – say t. Then it would take tN
time units to ind out the given name wasn’t
present. Another way of putting this is that
the time taken for the nonexistence check
is proportional to N. In computer science,
without going into too much rigorous
mathematics, we say the runtime eficiency
is O(N), pronounced ‘big-Oh of N’, although
you can read it as ‘is proportional to N’.

So if it took so many seconds to ind out
that a given name wasn’t in a dictionary of
1,000 pairs, it would take twice as long for a
dictionary of 2,000 pairs, and 10 times as
long for a dictionary of 10,000 pairs.

What if the given name was in the
dictionary? What could we say then? Well, it
could be that the matching pair was the irst
item checked. In that scenario, we say the best
case eficiency for ‘Exists’ is O(1), which you
read as ‘is constant’ (in other words, it doesn’t
depend at all on the number of items in the
dictionary). But, of course, for that to happen,
you’d have to be extremely lucky. You could
be completely unlucky and be looking for the
inal item. Here the worst case eficiency is
O(N) – the time taken would be proportional
to the number of items in the dictionary.

On average, though, if you searched for
every name in the dictionary, the eficiency
would be O(N/2). Now comes the fun bit with
big-Oh notation: since it essentially means
‘is proportional to’, you can take the 1/2 (a
constant) out of the parentheses into the
implied proportionality constant and say
that the eficiency is O(N). We say that
searching through the dictionary-as-array is
O(N): twice as many items, twice as long.

‘Insert’ is simple: we add the new name-
value pair to the end of the array, a constant

Back in issue 282, I cited ternary search trees as a

strong candidate for the data structure behind a

dictionary. Ternary trees, like radix trees, have a

runtime efficiency that’s dictated by the length

of the keys rather than their number, but are much

easier to implement. Ternary search trees and

radix trees also have a further benefit: using them

means you can easily produce a sorted list of

names in the dictionary, as well as produce a

prefix list (a list of names with a particular prefix). n

Ternary trees

1 Figure 1: Graphing some common big-Oh expressions (O(N^2) is cut off so we can see the others).

3

PCP293.theory 82 17/2/10 3:53:27 pm

Theory workshop Make it

 293 April 2010 83

What if the given name is
present? We can make the
same analysis as before: best
case is O(1), worst case is
going to be the same as not
inding it: O(logN), and so we say that, overall,
‘Exists’ is O(logN).

What about ‘Insert’ and ‘Delete’? Again,
we have to search for the name, so it would
seem that they’re both O(logN). But this time,
consider what we must do to add (or remove)
the name-value pair. For ‘Insert’, we have to
make a hole in the array to put the new pair
in, shufling all the items greater than it along
by one. For ‘Delete’, we have to shufle the
remaining pairs to close up the hole vacated by
the removed pair. If we’re lucky, in both cases,
we don’t have to move any items (that is, best
case is O(1)); if we’re unlucky we have to move
all of the remaining pairs (that is, worst case
is O(N)). On average, it’s O(N) for all the
shufling we need to do. Since O(N) is bigger
than O(logN) – for very large values of N the
(in)eficiency of the moving of the items will
swamp the eficiency of the search – we ignore
the smaller proportionality and just use the
larger one. We say ‘Insert’ and ‘Delete’ are
both O(N).

Hash table
Now for the next implementation: the hash
table. Without going into full detail, we have
an array as the basic data structure.

Again, we analyse ‘Exists’ irst. To ind an
item in a hash table, we hash the given name
to produce an index into the array. The hash is
produced by a randomising type function that
takes the name, chops it up and combines the
parts to produce an integer value. That integer
value is then reduced to a possible array index

value by use of the mod operator. The hash
function is designed so that similar names
produce very different hash values.

Best case is that ‘Exists’ is O(1). That is, we
create the hash for the given name, convert it
to an index, go to that element in the array,
and the pair we need is there and matches.
No matter how many items are in the array,
that process is constant. (Actually, the hash
function is usually O(k) where k is the length
of the name, but we’re ignoring that for now.)

What about worst case? Well, in practice
we’ll ind that many names will hash to the
same array index value. These are called
collisions and we need to implement a collision
resolution strategy to deal with them. The
simplest is known as chaining, where we chain
the name-value pairs as, say, a linked list at
each array element. In this case, once we’ve
calculated the index, we then do a sequential
search through the chain at that index.

To ensure that the chain is never too long,
hash tables grow themselves periodically when
their load factor (the number of pairs present
divided by the number of array elements)
reaches a particular value. To do this, a new
array is created, and all the pairs are rehashed
and inserted into the new array. This ensures
that chains never grow beyond a few items,
say ive or 10. Since this isn’t dependent on the
total number of items, it’s still constant and we
say ‘Exists’ in a hash table is O(1) on average.

‘Insert’ is a more dificult operation to
analyse. On the face of it, it’s O(1) – both the
‘Search’ and ‘Add’ functions are constant time
operations in general – but every now and then,
a reorganisation will take place on an insertion
operation. In general, hash tables are written
such that they double in size when they grow.
This is a O(N) operation, but we can amortise
it over all previous insertion operations, so that,
overall, ‘Insert’ remains O(1). Best case then is
O(1), worst case is O(N), amortised case is O(1).

The same types of arguments can be made
about ‘Delete’, although in general we tend not
to shrink a hash table anywhere near as often
as we make it bigger. ‘Delete’ is then O(1),
meaning that the amortised use of a hash table
over all its operations is O(1). There is, of course,

still that warning that every now and then you
will hit the O(N) worst case on an insertion.

Binary tree
The next data structure we can use is a balanced
binary search tree, such as a red-black tree.
This, like the sorted array version, makes the
assumption that names can be sorted.

In a binary tree, the eficiency of search
operations is O(d), where d is the maximum
depth of the tree (the number of levels from
the root of the tree to the furthest leaf). Since
a perfectly balanced binary search tree is
equivalent to binary search on a sorted array
(every link you decide to follow will enable you
to ignore a whole chunk of the tree), ‘Exists’ is
on average O(logN). Best case is still O(1), but
what about worst case? That depends on the
algorithm used to balance the binary tree.
Balancing is never perfect but, using red-black
trees as an example, we can prove that they’re
constructed such that the longest path is a
maximum of twice the length of the shortest
path. If you like, O(2logN). Since 2 is a constant,
we can take it out, making red-black trees
O(logN) in the worst case for ‘Exists’.

For ‘Insert’ and ‘Delete’, there’s a lot of
mathematics that can prove that they’re both
O(logN) as well. In essence, the search is
O(logN), and the addition of the new node
or removal of the old node is O(1) on average.

So, overall, a red-black tree is O(logN) in
all its operations. Perhaps more importantly, it
has guaranteed O(logN) time even in the worst
case. This means that some people will prefer
to use a red-black tree for their dictionary
instead of a hash table because they don’t want
to hit the possibility of O(N) insertion.

From this discussion, you should now have
a basic understanding of how to read and
understand big-Oh expressions and how to
evaluate algorithms and data structures based
on them. Figure 1 illustrates the runtime for
various common big-Oh expressions.

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

All of the efficiency results quoted in this article

are theoretical. They are all of the form ‘for large

values of N the efficiency is proportional to some

expression in N’, but make no mention of the size

of the constant of proportionality. Therefore,

when deciding on which data structure to use

in your dictionary, you should profile actual

code running on your actual data. It’s

pointless worrying, for example, about the

efficiency of millions of items in a dictionary

when you’ll only have 100. n

Profiling

1 Figure 2: A small radix tree

(using middle dot to indicate

end of word).

PCP293.theory 83 17/2/10 3:53:28 pm

