PCP291.theory 85

Behind the
inimax algorithm

Ever fancied programming two-player zero-sum
games? Here’s everything you need to know

ne of the most interesting avenues
of computer science is that of
programming a computer to play
a game against a human opponent.
Examples abound, with the most famous that
of programming a computer to play chess. But
no matter what the game is, the programming
tends to follow an algorithm called minimax,
with various attendant sub-algorithms in tow.
First, a definition: a two-player zero-sum
game is one played between two players where
the players play alternately, the whole game is
visible to both and there’s a winner and a loser
(or there’s a draw). It’s zero-sum because if the
game is played for money, the loser pays the
winner and overall there’s no loss of money.
(A bit like energy in a reaction: no money is
created or destroyed.)
One of the simplest two-player zero-
sum games is noughts and crosses, where
the players alternately place Xs and Os in

a 3 x 3 grid, with the winner being the first
i player to place three of their symbol in a row,

column or diagonal line. Like me, you probably
played this as a child and, as you played it, you
learned how to force a win or draw every time.

i Infact, once both players get that insight, every

game is guaranteed to result in a draw. The
only way to win is to play a novice player.

The algorithm

. Analysing noughts and crosses with the

minimax algorithm is pretty standard in
game theory, so I'll discuss a different game
called Nim to illustrate minimax and its

i variants. Nim is interesting because it’s easily

understood, fairly unfamiliar and simply
modelled. Plus, there are no draws in Nim, so
the whole winner/loser thing is much simpler:

someone always wins. But who?

In Nim, the players face three piles of stones

with, say, five stones in each pile. Each player

>

. .
PCPlus 291 February 2010 | 85

11/12/09 4:08:56 pm

Make it

Player 1
| —
X X
Player 2 X
X |0 X o X O |X X X [0} o}
[0} o o X X
X X X
¢}
Player 1
(o] o o y

5,5,5 Max

0,5,5 Minnie
— ||| =5

0,0,5 Max
—lli=

0,00 Minnie

A Figure 1: The first few levels in the noughts and crosses game tree.

takes it in turn to play by removing from a
single pile anything from one stone to the
entire pile. The loser is the one who is forced
to remove the final stone from the final pile,
leaving all three piles empty. (Another way of
looking at it is that the winner is the first player
to be faced with three empty piles.)

For example, suppose our two players are

does, not being a gentleman) and decides to
remove all the stones from pile one. Minnie
then removes all but two stones from pile two.
Max thinks for a while, then removes all but
two stones from pile three. Minnie resigns,
because no matter what she does, Max will
win. (If she removes one stone from a pile,
Max removes both stones from the other, and
she’s left with the final stone. If she removes
both stones from a pile, Max removes one stone
from the other, leaving her with the final stone.)

Traversing nodes
Games such as Nim are modelled as game
trees. You start off with the initial state of the
game as a node, the root of the tree. From this
node, each possible move is modelled as a link
to another node, which stands in for another
state or position of the game.

So, for example, in noughts and crosses,
the root node is the empty grid. Traditionally

Claude Shannon

In 1950, Claude Shannon published a paper called
Programming a Computer for Playing Chess, which
was the first such paper to consider this particular
game tree. In it, he reached an upper bound for
the number of nodes in a game tree for chess to
be about 10'%, which meant, as he put it, that a
“machine operating at the rate of one [node] per
micro-second would require over 10%° years to
calculate the first move”. Shannon’s paper was
remarkable because it contained the insight

of an evaluation function for the strength of

a position, and using it to be able to calculate
node values to several levels deep.

i Xstarts and there are three possible moves:

i the centre, a corner and the middle cell along
an edge (all the cells are equivalent to one of

i those three). So, the initial root node has three

links to other game states. Each of those new
nodes has different possible moves for O, as
shown in Figure 1. You can imagine going

¢ further and drawing more levels.
named Max and Minnie. Max starts (he always

Nim’s tree is more complex. The initial
state has 15 possible links, corresponding to
removing one, two, three, four or five stones
from each of the three piles. Each of these 15
possible states of the game then has up to 14

i possible links to other states for the second
. player, and so on. You can imagine that the

number of game states (that is, nodes in the
game tree) explodes pretty quickly.

If you happened to have a big enough piece
of paper, it would be possible to map out the

i entire game tree for the version of Nim that I
¢ described. For the leaf nodes of the tree (that

is, the nodes with no links coming out of them),
you would be able to identify the loser of the
game for the path taken through the tree

to each particular leaf. Figure 2 shows a

¢ particularly daft path through the tree where
i the players take all the stones from each pile

in turn (not exactly an insightful game, but
nevertheless a possible one under the rules).

A Figure 2: An allowable but idiotic game play for
Nim, resulting in Max losing.

The loser is Max, because he takes all the
stones from pile three in the third move.

We can assign a value to each leaf node
to indicate who wins (or loses). To make sure
we don’t get completely confused, we assign a
monetary value from the viewpoint of the first
player, Max. Let’s say the winner of the path
to the leaf receives £1 and the loser has to pay
out that amount - so if the winner is Max, the
value of the node is £1, while if the winner is
Minnie, the value is -£1 (since Max has to pay
that amount to her).

Player one
Let’s imagine that we set up the entire game

© tree from the viewpoint of Max, the player
who makes his move first. Each game position

corresponds to a node in the tree, and if you

think about it, a whole level of the tree will

correspond to a given player. So, the root of
the tree is what Max is faced with at the very
start of the game: five stones in each of the
three piles, and 15 possible game positions
to leave for Minnie. What does Max choose
to play in this situation?

What he should do is analyse all possible
moves from the bottom up and assign a value

i to each node as he works his way up the tree,

First proposed by John McCarthy at a
conference in 1956 (although only named as
such later on), alpha-beta pruning is a method
for cutting off whole branches of the game
tree so that they don't have to be evaluated
with minimax.

In essence, the algorithm maintains two
extra values during the minimax recursion:
alpha and beta. Alpha is the minimum value
for Max (biggest loss for him) and beta is the
maximum value for Minnie (biggest win for
Max). They start out as negative infinity for

Spotlight on... Alpha-beta pruning

alpha and positive infinity for beta. As the
minimax recursion proceeds, the value for
alphais replaced when a new minimax value
that is larger is found (ditto for beta, when a
smaller value is calculated). If they cross at any
time, the branch of the tree currently being
investigated is no good for either player and
can be further ignored, or pruned.

It can be shown that this algorithm doesn’t
mistakenly prune branches that will benefit
either player and so it’s widely used in minimax
implementations.

86 | PCPlus 291 February 2010

PCP291.theory 86

11/12/09 4:08:56 pm

Expectiminimax

Games such as Nim and chess have outcomes
that are solely dependent on the skill of the
players, or, presumably, their access to a well-
written minimax analyser. Games such as
backgammon are different, because their
outcomes also depend on a randomisation factor
such as the roll of a dice. The minimax algorithm
has been expanded to suit such games (leading
to the expectiminimax algorithm) by including
what are known as chance nodes that incorporate
the expected value of the randomisation agent
(for backgammon, this would be the dice).

according to the amount he could win on that
node if he played optimally.

Let’s take alook at a made-up example,
shown in Figure 3. Here, the root node shows
a game position from which Max must play.
There are two possibilities: playing the
left-hand option goes to a game position that
he’s already worked out means he wins £1;
playing the right-hand option goes to a game
position where he loses £1. (Remember, all
payouts are from Max’s viewpoint.) I don’t
know about you, but I'd choose the first play.
This means that the current game position
also has a value of £1. For every game position
where it’s his turn to play, Max would choose
the option that would maximise his winnings.

Minnie, who is just as perceptive as Max,
would, of course, choose plays that would
result in the best result for her and ignore all
the others. So she would always choose a play
that maximised her winnings, which, from
Max’s perspective, means minimising his.

If you had the entire tree, you could work
out a value for each node working from the
bottom up. If it was a ‘Max node’ (that is, Max
had to play from it), it would have a value that
was the maximum of the child nodes. If it was
a ‘Minnie node’ it would have a value that was
the smallest (the minimum) of the child nodes.
This, in essence, is the minimax algorithm:
build the tree, work out the value of each
node using an alternate minimise/maximise
constraint, and the value of the root is the
value of the entire game for player one (Max,
as we called him).

The recursive method

Instead of building the entire tree and then
analysing it, the best approach is to traverse
the tree recursively (a postfix traversal, in fact)
and calculate what you need when you need it

? Max

~ 5

Win £1 || Lose £1

Minnie

A Figure 3: A simple choicein a game tree, to
calculate the minimax value of the root node.

PCP291.theory 87

¢ recursively, you calculate the minimax value
i by calculating the maximum (or minimum) of

i (one pile of five stones, you can remove one,

i minimax value for Max (W = win, L = lose).
i Note that the value of the game is L - that is,

: isabig problem. The game tree can be huge

. back-and-forths), it would mean that the
i lowest level of the tree would have something

i observable universe, meaning that, in essence,
i there’s no possible way for a computer to map

¥ Chess programs

Make it

Max

Max

Minnie

A Figure 4: The complete game tree for a simplified Nim game.

(and destroy the stuff' you don’t need when
youre done). In essence, since a tree is defined

the minimaxes of all the child trees. Remember
that the levels alternate between maximising
and minimising (sometimes you look at it from
Minnie’s viewpoint instead of Max’s).

Figure 4 shows a very simplified Nim game

two or three stones each play), fully expanded

into a game tree. The number inside each node
is the number of stones left in the pile after the
move, and the letter alongside each node is the

Max will always lose (if you like, this simplified

Nim is always a win for the second player).
Although the minimax algorithm is always

guaranteed to find the best play for Max, there

- mind-bogglingly huge. Consider chess, the
classic archetype of a two-player zero-sum
game. At each game position there could be
something like 30 possible moves. Since each
chess game is made up of about 80 plays (40

like 10" nodes. (Note that in tournaments it’s
rare for a game to go to checkmate - the losing
player is likely to resign well before then.) As a
comparison, there are around 10% atoms in the

the entire chess game tree. So what can we do?
The first optimisation is to limit the depth

to which we evaluate the game tree using the

minimax algorithm. Since we may not actually

Computer chess is one of the most fertile avenues
of game research. Modern chess programs running
on standard hardware use sophisticated pruning
techniques to cull unprofitable areas of the game
tree, use advanced heuristics to evaluate a game
position and have large databases of standard
opening games (so that they don't have to analyse
an opening game at all) and common endgames
(so that they can more easily force checkmates
without having to analyse a multitude of game
positions towards the end of a game).

reach a leaf node in doing this, we make use

of an approximation function - a heuristic -

to approximate the value of the node or game
position. Of necessity, this value is not going

to be accurate, but it will enable us to apply the
minimax algorithm without having to evaluate
all the nodes down to the leaves. The better the
heuristic, the better the chances of devising a
winning game play and the more accurate our
minimax values will be.

Limiting depth

In our recursive algorithm for minimax, we’ll
need to limit the depth of the recursion instead
of allowing the recursion to reach the leaves.
The simplest way to do this is to pass a depth
parameter to the recursive minimax function
and decrement its value at every recursive call.
At the lowest level of the recursion, we use the
heuristic function to calculate the minimax
value of the current game position.

Now, the resulting minimax value at the
root of the game tree is only going to be an
approximation. The deeper we allow the
partial minimax algorithm to go, the more
accurate its value will be (because we’re more
likely to find leaf nodes in our traversal), but
the longer the traversal will take. We have to
strike a balance between accuracy and the
time taken to calculate the minimax value
(and hence the move to play).

Once it’s our turn again to make a move, we
should recalculate the minimax value at our
new game position, making it, in effect, the
root of the current state of the game. Every
move would be made after a new minimax
calculation based on the current game state.

In many chess programs that run on
standard PC hardware, the depth of the
minimax search is limited to some six
full-width levels — around a billion possible
game positions. Any more than that and the
time taken to analyse the game positions
would be far too long to be practical. For
example, analysing positions at a rate of a
million per second, six full-width levels
would take about a quarter of an hour. B

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
Jeedback@pclus.co.uk

PCPlus 291 February 2010 | 87

11/12/09 4:08:56 pm

