
Make it

Theory
workshop

 290 January 2010 113

Find out exactly how good random number
generators are with a veritable barrage of tests

Testing for
randomness

T
here are many random number
generators available for you to use, but
how can you tell how good they are?
Just how random are the numbers

that are returned from any given generator?
Before we even start attempting to answer

that question, we need to go back to the
beginning and ask exactly what a random
number is. Donald Knuth, he of the multi-
volume, unlikely-to-be-completed Art of
Computer Programming, has possibly the
best quote on the subject: “In a sense, there
is no such thing as a random number. For
example, is 2 a random number?”

With the joke, he does raise a serious
point: when we talk about random numbers,
we generally don’t mean individual ones,
we mean a sequence of numbers that ‘look’
random. Each number in the sequence should
seem to bear no relation to either its preceding
or its succeeding neighbours. We also don’t

particularly care how the numbers were
generated; instead we use the results of the
generator and require that the numbers we get
exhibit randomness, as if they were produced
by proverbial monkeys tossing coins.

If you ask someone to reel off a sequence of
random digits, you’d probably get something
that was anything but random. Humans are
conditioned from an early age to think of
certain digits as ‘religious’, ‘lucky’ or ‘magic’,
and we tend to unconsciously favour them.
So if you ask someone to think of a sequence
of random digits, say 100 of them, they tend
to respond with some digits more often than
others. Also, the average person shies away
from saying the same digit twice in a row, or
giving sequential digits (4, 5, 6, say), both of
which would be expected to crop up in a true
random sequence.

Looking at the problem from the opposite
direction, we humans are also extraordinarily 3

PCP290.theory 113 13/11/09 5:22:45 pm

114 290 January 2010

Make it Theory workshop

count all the 0s, all the 1s, all the 2s, and so
on in the sequence we’re given. We’d expect
the count of each digit to be about a 10th of
the total. So, if we had a 100-digit sequence,
we’d expect to see roughly 10 of each digit.

However, although simple to calculate, this
test seems a little haphazard and doesn’t really
tell us much. What if the counts were exactly
10 each? That sounds a little ishy to me for a
purely random sequence. One would expect
that in a given sequence of 100 digits some
digits would be better represented than others,
just by chance. You’d imagine that there would
be some sloppiness in the counts, but they’d all
be bunched around 10, plus or minus a few of
course. But how much of a spread from exactly
10 can we allow before it all starts getting a
little ishy again? Is there some more rigorous
principle that we can apply here?

Time for a thought experiment. Imagine
we had a pair of coins that we think are biased.
How could we prove that they are? What we
would do is toss the coins 100 times, say, and
plot the number of times we get two heads, two
tails or one of each in a table. Our table might
look like Table 1. I’ve also added the probability
and the expected number of results for each
event to the table for reference.

Just looking at the table, we
could possibly argue that the
coins are biased towards heads
and away from tails, but is the
difference really that signiicant?
Let’s look at the spread (the
difference) of our results from
the expected values. We’ll square
these differences to accentuate
them and to get rid of any
negative values. The sum of these
squared differences would be a
measure of how biased these
coins are. Calculating this sum,
I get a igure of 26 (= 32 + 12 +
42). So is that big or small,
noteworthy or unimportant?

In order to answer this
question, we should incorporate
the probability of each event
somehow. We should get a smaller
term to add into our sum for ‘one
of each’ than for ‘two heads’, just

because the former is more likely to happen.
To put it another way, the difference of 3 for
‘two heads’ seems much more signiicant than
the difference of 1 for ‘one of each’. So let’s divide
each squared difference by the expected result
of that event. The new sum we calculate (which
is usually known as X) is the sum of the squared
spreads divided by the expected values. I get a
value for X of 1.02 (= 32/25 + 12/50 + 42/25).
That looks awfully scientiic, but what new
knowledge has it given us?

In fact, what we’ve just calculated is
the chi-squared value for our tests (‘chi’ is
pronounced ‘ky’). We can look up this value in
a standard table of the chi-squared distribution
(Table 2 is an abbreviated example of the full
table). The values shown in the table are
selected values from the chi-squared
distribution with various degrees of freedom.
Without being too rigorous about it, the
number of degrees of freedom is one less than
the number of ‘buckets’ we are counting events
into. In our case, we have three buckets: one
for two heads, one for one of each and one for
two tails, so the number of degrees of freedom
for our experiment is two.

Look along the line for two degrees of
freedom, and there are four values in the four
columns. If we look in the one per cent column
the value there (0.0201) should be read as
meaning: ‘The value X we calculated should
be less than 0.0201 one per cent of the time’.
In other words, if we repeated our experiment
100 times, only one of them (or so) would have
an X value of less than 0.0201. If we found
that several had a value less than 0.0201 then
it would give a very strong indication that
lipping the coins is not a random event and
that they are biased. A similar interpretation
can be made for the ive per cent column.

Moving to the 95 per cent column, the value
there should be read as: ‘Our value X should be
less than 5.99 95 per cent of the time’, or, if you
prefer, ‘X should be greater than 5.99 only ive
per cent of the time’. A similar explanation also
applies to the 99 per cent column.

We see that our X value falls in between the
ive per cent value and the 95 per cent value,
and so we don’t have a strong conclusion either
way: we have to assume that the coins are true.

If, on the other hand, our X value were 10,
we would see that this result should only occur

Spotlight on… Plotting random points
Another way of testing whether a sequence

of numbers is random or not is to plot them

in a graph and then look to see if you can find

patterns in the dots.

To do this you take the numbers from your

generator as values between 0 and 1. You pair

them as (x, y) coordinates and plot them. For

a good generator, you would see something

similar to Figure 1: the dots should be spread

randomly across the entire graph, with no real

clumping or patterns visible. (In fact, Figure

1 shows a very thin vertical slice of the graph

with x varying from 0.0 to 0.001, but magnified

1,000 times horizontally.)

For a not so good generator (in this case,

the so-called Minimal Standard Generator,

which isn’t used any more), the graph looks

like Figure 2 for the same thin vertical slice,

magnified. As you can see, the MSG has some

very troubling attributes when the random

numbers are picked off in pairs.

Generators may pass this ‘pattern test’ in

two dimensions, but these regular effects may

become visible in higher dimensions. n

bad at determining whether a sequence is
random or not. If you were presented with a
sequence of digits that had three 4s in a row,
would you reject it as not random? What if it
had four of them in a row? Or ive? Or 42?
Using elementary probability, the chance of
getting any given digit in any random sequence
is 1/10. Hence, the probability of two 4s in a
row would be 0.01, three of them 0.001, and so
on. Of course, any other sequence of length n
would have the same probability of appearing
as n successive 4s. It’s just that n 4s clumped
together in a random sequence looks less than
random to our eyes.

Determining randomness
So how can we decide if a random number
sequence is, in fact, genuinely random? There’s
nothing for it but to use statistics. The irst and
simplest statistical test of randomness is to

Remarkably, tossing a coin is not necessarily as fair

as you may think. In the early ‘90s, Persi Diaconis

showed in a set of experiments with a mechanical

coin flipper that, in general, if a coin is flipped in

exactly the same way (same force, same speed

and so on) it will land in the same way. That is, the

probability is no longer 50/50; instead, it depends

on the initial state. Human flippers tend to add

some randomness to this mechanical result, but it

has been shown that if you train yourself to flip a

coin in the same way you can alter the probability

to produce a real bias, without the toss looking

any different to normal. n

Tossing a coin

1 Figure 1: A good random number plot in 2D.

1 Table 1: Results for tossing two coins 100 times.

Two
heads

One of
each

Two
tails

Observed results 28 51 21

Probability of event 0.25 0.5 0.25

Expected results 25 50 25

3

PCP290.theory 114 13/11/09 5:22:45 pm

 290 January 2010 115

Theory workshop Make it

in less than one per cent of our
trials (10 > 9.21, which is the 99
per cent value). And this would be
a strong indication that the coins
were biased. Of course, we should
perform more experiments and
see how our spread of X values it
into the chi-squared distribution
– from an extended set we’ll get a
better feel for the bias of the coins.
We don’t want to get caught out
with a rogue result, one which
probability theory tells us should
happen, albeit infrequently.

Generally, we take the
same boundaries at either end
of the range of the chi-squared
distribution, for example, ive per
cent and 95 per cent, and then say
that our experiment is signiicant
at the ive per cent level if it falls
outside of these boundaries, or is
not signiicant at the ive per cent level if it
falls in between them.

How many individual events should we
generate? In our coin test we did 100 lips.
Is this enough, or can we get away with less?
The answer is unclear. Knuth states that a
common rule of thumb is to make sure that
the expected number of events for each bucket
should be ive or more (our expected numbers
are 25, 50 and 25, so we’re all right there), and
that the more events to bucket the merrier.

Now that we have a general statistical
test, let’s take a look at how we can apply it
to formulate four randomness tests for a
sequence of numbers.

Testing the numbers
The tests all follow the same logic. We’ll use
random numbers between 0.0 and 1.0. Note
that the ranges discussed here are all inclusive
at the lower end and exclusive at the upper end.
We count various events derived from these
random numbers into buckets, calculate the
probability associated with each bucket and,
from this, work out the chi-squared value and
apply the chi-squared test with the number
of degrees of freedom being one less than
the number of buckets. It sounds a little bit
abstract but you’ll see a demonstration of the
idea in a moment.

The irst test is the simplest, and it’s called
the uniformity test. This is the one we were
discussing earlier. The random numbers are

going to be checked to see that they ‘uniformly’
cover the range 0.0 to 1.0. We create 100
buckets, generate 10,000 random numbers
and slot them into each bucket. Bucket 0 gets
all the random numbers from 0.0 to 0.01,
bucket 1 gets those from 0.01 to 0.02, and
so on. The probability of a random number
falling into each particular bucket is 0.01.
We calculate the chi-squared value for our
test and check that against the standard
table, using the 99 degrees of freedom line.

The second test – the gap test – is a little
more interesting. This is designed to check that
you don’t get runs of values in one particular
range followed by runs in by another, lip-
lopping between the two, even though as a
whole the random numbers are evenly spread
out. Deine a sub-range of the range 0.0 to 1.0
– let’s say 0.0 to 0.5. Now generate random
numbers. For each random number, test to see
whether it is in our sub-range (a ‘hit’) or not (a
‘miss’). You’ll get a sequence of hits and misses.
Look at the runs of one or more misses (these
are called the ‘gaps’ between the hits, hence the
gap test). You’ll get some runs of just one miss,
of two misses and so on. Bucket these lengths.
Let’s say the probability of a hit is p (it’ll be the
width of the sub-range expressed as a decimal)
and so the probability of a miss is (1-p). We can
now calculate the probability of a run of one
miss ((1-p).p), of two misses ((1-p)2.p) and
therefore of n misses: ((1-p)n.p). We can hence
calculate the expected numbers for each run
length. From then it’s a short step to the chi-

squared test. We shall use 10 buckets, hence
there are nine degrees of freedom. Generally,
we repeat the gap test for the irst and second
halves of the 0.0 to 1.0 range, and for the irst,
second and third thirds.

The third test is known as the poker test.
The random numbers are grouped into sets or
‘hands’ of ive, and the numbers are converted
into ‘cards’; each ‘card’ actually being a digit
from 0 to nine. The number of different cards
in each hand is then counted (it’ll be from one
to ive), and this result is bucketed. Because
the probability of only one digit being repeated
ive times is so low, it’s generally grouped into
the ‘two different digits’ category. Apply the
chi-squared test to the four buckets; there will
be three degrees of freedom. The probability
for each bucket is somewhat dificult to
calculate (and involves something called
Stirling numbers), so I won’t attempt to
explain it here.

The fourth test is the coupon collector’s
test. The random numbers are read one by
one and converted into a ‘coupon’, or a number
from 0 to 4. The length of the sequence required
to get a complete set of the coupons the digits 0
to 4) is counted; this will obviously vary from 5
upwards. Once a full set is obtained, we start
over. We bucket the lengths of these sequences
and then apply the chi-squared test to the
buckets. We’ll use buckets for the sequence
lengths from 5 to 19, and then have a composite
bucket for every length after that. So, 16 buckets
and hence 15 degrees of freedom. Again, like
the poker test, the calculation of the probability
for each bucket is somewhat mathematically
intensive, so we won’t present it here.

There are many other tests that can be
devised along these lines. The problem, in
general, is how to calculate the expected
values (that is, the probability) of each event
because some of them require some fairly
heavy-duty mathematics. Nevertheless,
these statistical tests provide the best way
to determine whether a particular random
number sequence is really random or not. n

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

In 1995, George Marsaglia of Florida State

University published the result of several years’

work on a CD-ROM. The work was in two parts:

a huge table of random numbers (4.8 billion

random bits), and a battery of statistical tests

coded in C. Marsaglia had produced a good dozen

new tests beyond those documented by Knuth

(the simpler ones we demonstrate in the main

article) and the random bits on the CD-ROM

passed all those tests. The table of bits was

produced by the best pseudo-random number

generators laced with the output from hardware

devices that produce random bits using

radioactive materials or electronic noise. n

Perhaps the best modern pseudo-random

number generator is the Mersenne twister

algorithm, which was devised in 1997 by Makoto

Matsumoto and Takuji Nishimura. It’s fast, has

a quite astoundingly huge period (the count of

random numbers generated before it repeats)

of 10^6000 and passes all of Marsaglia’s Diehard

randomness tests. It’s been implemented in the

run-times for Python and Ruby, as well as

applications like MATLAB. n

More randomness tests

The Mersenne twister

1 Figure 2: A bad random number plot in 2D.

1 Table 2: Selected percentage points of the

chi-squared distribution.

Degrees of
freedom

1% 5% 95% 99%

1 0.000157 0.00393 3.84 6.63

2 0.0201 0.103 5.99 9.21

3 0.115 0.352 7.81 11.3

4 0.297 0.711 9.49 13.3

5 0.554 1.15 11.1 15.1

PCP290.theory 115 13/11/09 5:22:45 pm

