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Find out exactly how good random number 
generators are with a veritable barrage of tests

Testing for 
randomness

T
here are many random number 
generators available for you to use, but 
how can you tell how good they are? 
Just how random are the numbers 

that are returned from any given generator? 
Before we even start attempting to answer 

that question, we need to go back to the 
beginning and ask exactly what a random 
number is. Donald Knuth, he of the multi-
volume, unlikely-to-be-completed Art of 
Computer Programming, has possibly the 
best quote on the subject: “In a sense, there 
is no such thing as a random number. For 
example, is 2 a random number?” 

With the joke, he does raise a serious 
point: when we talk about random numbers, 
we generally don’t mean individual ones, 
we mean a sequence of numbers that ‘look’ 
random. Each number in the sequence should 
seem to bear no relation to either its preceding 
or its succeeding neighbours. We also don’t 

particularly care how the numbers were 
generated; instead we use the results of the 
generator and require that the numbers we get 
exhibit randomness, as if they were produced 
by proverbial monkeys tossing coins.

If you ask someone to reel off a sequence of 
random digits, you’d probably get something 
that was anything but random. Humans are 
conditioned from an early age to think of 
certain digits as ‘religious’, ‘lucky’ or ‘magic’, 
and we tend to unconsciously favour them. 
So if you ask someone to think of a sequence 
of random digits, say 100 of them, they tend 
to respond with some digits more often than 
others. Also, the average person shies away 
from saying the same digit twice in a row, or 
giving sequential digits (4, 5, 6, say), both of 
which would be expected to crop up in a true 
random sequence. 

Looking at the problem from the opposite 
direction, we humans are also extraordinarily 3
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count all the 0s, all the 1s, all the 2s, and so 
on in the sequence we’re given. We’d expect 
the count of each digit to be about a 10th of 
the total. So, if we had a 100-digit sequence, 
we’d expect to see roughly 10 of each digit. 

However, although simple to calculate, this 
test seems a little haphazard and doesn’t really 
tell us much. What if the counts were exactly 
10 each? That sounds a little ishy to me for a 
purely random sequence. One would expect 
that in a given sequence of 100 digits some 
digits would be better represented than others, 
just by chance. You’d imagine that there would 
be some sloppiness in the counts, but they’d all 
be bunched around 10, plus or minus a few of 
course. But how much of a spread from exactly 
10 can we allow before it all starts getting a 
little ishy again? Is there some more rigorous 
principle that we can apply here?

Time for a thought experiment. Imagine 
we had a pair of coins that we think are biased. 
How could we prove that they are? What we 
would do is toss the coins 100 times, say, and 
plot the number of times we get two heads, two 
tails or one of each in a table. Our table might 
look like Table 1. I’ve also added the probability 
and the expected number of results for each 
event to the table for reference.

Just looking at the table, we 
could possibly argue that the 
coins are biased towards heads 
and away from tails, but is the 
difference really that signiicant? 
Let’s look at the spread (the 
difference) of our results from 
the expected values. We’ll square 
these differences to accentuate 
them and to get rid of any 
negative values. The sum of these 
squared differences would be a 
measure of how biased these 
coins are. Calculating this sum, 
I get a igure of 26 (= 32 + 12 + 
42). So is that big or small, 
noteworthy or unimportant?

In order to answer this 
question, we should incorporate 
the probability of each event 
somehow. We should get a smaller 
term to add into our sum for ‘one 
of each’ than for ‘two heads’, just 

because the former is more likely to happen. 
To put it another way, the difference of 3 for 
‘two heads’ seems much more signiicant than 
the difference of 1 for ‘one of each’. So let’s divide 
each squared difference by the expected result 
of that event. The new sum we calculate (which 
is usually known as X) is the sum of the squared 
spreads divided by the expected values. I get a 
value for X of 1.02 (= 32/25 + 12/50 + 42/25). 
That looks awfully scientiic, but what new 
knowledge has it given us?

In fact, what we’ve just calculated is 
the chi-squared value for our tests (‘chi’ is 
pronounced ‘ky’). We can look up this value in 
a standard table of the chi-squared distribution 
(Table 2 is an abbreviated example of the full 
table). The values shown in the table are 
selected values from the chi-squared 
distribution with various degrees of freedom. 
Without being too rigorous about it, the 
number of degrees of freedom is one less than 
the number of ‘buckets’ we are counting events 
into. In our case, we have three buckets: one 
for two heads, one for one of each and one for 
two tails, so the number of degrees of freedom 
for our experiment is two. 

Look along the line for two degrees of 
freedom, and there are four values in the four 
columns. If we look in the one per cent column 
the value there (0.0201) should be read as 
meaning: ‘The value X we calculated should 
be less than 0.0201 one per cent of the time’. 
In other words, if we repeated our experiment 
100 times, only one of them (or so) would have 
an X value of less than 0.0201. If we found 
that several had a value less than 0.0201 then 
it would give a very strong indication that 
lipping the coins is not a random event and 
that they are biased. A similar interpretation 
can be made for the ive per cent column. 

Moving to the 95 per cent column, the value 
there should be read as: ‘Our value X should be 
less than 5.99 95 per cent of the time’, or, if you 
prefer, ‘X should be greater than 5.99 only ive 
per cent of the time’. A similar explanation also 
applies to the 99 per cent column.

We see that our X value falls in between the 
ive per cent value and the 95 per cent value, 
and so we don’t have a strong conclusion either 
way: we have to assume that the coins are true. 

If, on the other hand, our X value were 10, 
we would see that this result should only occur 

Spotlight on… Plotting random points
Another way of testing whether a sequence 

of numbers is random or not is to plot them 

in a graph and then look to see if you can find 

patterns in the dots.

To do this you take the numbers from your 

generator as values between 0 and 1. You pair 

them as (x, y) coordinates and plot them. For 

a good generator, you would see something 

similar to Figure 1: the dots should be spread 

randomly across the entire graph, with no real 

clumping or patterns visible. (In fact, Figure 

1 shows a very thin vertical slice of the graph 

with x varying from 0.0 to 0.001, but magnified 

1,000 times horizontally.)

For a not so good generator (in this case, 

the so-called Minimal Standard Generator, 

which isn’t used any more), the graph looks 

like Figure 2 for the same thin vertical slice, 

magnified. As you can see, the MSG has some 

very troubling attributes when the random 

numbers are picked off in pairs.

Generators may pass this ‘pattern test’ in 

two dimensions, but these regular effects may 

become visible in higher dimensions. n

bad at determining whether a sequence is 
random or not. If you were presented with a 
sequence of digits that had three 4s in a row, 
would you reject it as not random? What if it 
had four of them in a row? Or ive? Or 42? 
Using elementary probability, the chance of 
getting any given digit in any random sequence 
is 1/10. Hence, the probability of two 4s in a 
row would be 0.01, three of them 0.001, and so 
on. Of course, any other sequence of length n 
would have the same probability of appearing 
as n successive 4s. It’s just that n 4s clumped 
together in a random sequence looks less than 
random to our eyes.

Determining randomness
So how can we decide if a random number 
sequence is, in fact, genuinely random? There’s 
nothing for it but to use statistics. The irst and 
simplest statistical test of randomness is to 

Remarkably, tossing a coin is not necessarily as fair 

as you may think. In the early ‘90s, Persi Diaconis 

showed in a set of experiments with a mechanical 

coin flipper that, in general, if a coin is flipped in 

exactly the same way (same force, same speed 

and so on) it will land in the same way. That is, the 

probability is no longer 50/50; instead, it depends 

on the initial state. Human flippers tend to add 

some randomness to this mechanical result, but it 

has been shown that if you train yourself to flip a 

coin in the same way you can alter the probability 

to produce a real bias, without the toss looking 

any different to normal. n

Tossing a coin

1 Figure 1: A good random number plot in 2D.

1 Table 1: Results for tossing two coins 100 times.

Two 
heads

One of 
each

Two 
tails

Observed results 28 51 21

Probability of event 0.25 0.5 0.25

Expected results 25 50 25

3
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in less than one per cent of our 
trials (10 > 9.21, which is the 99 
per cent value). And this would be 
a strong indication that the coins 
were biased. Of course, we should 
perform more experiments and 
see how our spread of X values it 
into the chi-squared distribution 
– from an extended set we’ll get a 
better feel for the bias of the coins. 
We don’t want to get caught out 
with a rogue result, one which 
probability theory tells us should 
happen, albeit infrequently.

Generally, we take the 
same boundaries at either end 
of the range of the chi-squared 
distribution, for example, ive per 
cent and 95 per cent, and then say 
that our experiment is signiicant 
at the ive per cent level if it falls 
outside of these boundaries, or is 
not signiicant at the ive per cent level if it 
falls in between them.

How many individual events should we 
generate? In our coin test we did 100 lips. 
Is this enough, or can we get away with less? 
The answer is unclear. Knuth states that a 
common rule of thumb is to make sure that 
the expected number of events for each bucket 
should be ive or more (our expected numbers 
are 25, 50 and 25, so we’re all right there), and 
that the more events to bucket the merrier. 

Now that we have a general statistical 
test, let’s take a look at how we can apply it 
to formulate four randomness tests for a 
sequence of numbers.

Testing the numbers
The tests all follow the same logic. We’ll use 
random numbers between 0.0 and 1.0. Note 
that the ranges discussed here are all inclusive 
at the lower end and exclusive at the upper end. 
We count various events derived from these 
random numbers into buckets, calculate the 
probability associated with each bucket and, 
from this, work out the chi-squared value and 
apply the chi-squared test with the number 
of degrees of freedom being one less than 
the number of buckets. It sounds a little bit 
abstract but you’ll see a demonstration of the 
idea in a moment.

The irst test is the simplest, and it’s called 
the uniformity test. This is the one we were 
discussing earlier. The random numbers are 

going to be checked to see that they ‘uniformly’ 
cover the range 0.0 to 1.0. We create 100 
buckets, generate 10,000 random numbers 
and slot them into each bucket. Bucket 0 gets 
all the random numbers from 0.0 to 0.01, 
bucket 1 gets those from 0.01 to 0.02, and 
so on. The probability of a random number 
falling into each particular bucket is 0.01. 
We calculate the chi-squared value for our 
test and check that against the standard 
table, using the 99 degrees of freedom line.

The second test – the gap test – is a little 
more interesting. This is designed to check that 
you don’t get runs of values in one particular 
range followed by runs in by another, lip-
lopping between the two, even though as a 
whole the random numbers are evenly spread 
out. Deine a sub-range of the range 0.0 to 1.0 
– let’s say 0.0 to 0.5. Now generate random 
numbers. For each random number, test to see 
whether it is in our sub-range (a ‘hit’) or not (a 
‘miss’). You’ll get a sequence of hits and misses. 
Look at the runs of one or more misses (these 
are called the ‘gaps’ between the hits, hence the 
gap test). You’ll get some runs of just one miss, 
of two misses and so on. Bucket these lengths. 
Let’s say the probability of a hit is p (it’ll be the 
width of the sub-range expressed as a decimal) 
and so the probability of a miss is (1-p). We can 
now calculate the probability of a run of one 
miss ((1-p).p), of two misses ((1-p)2.p) and 
therefore of n misses: ((1-p)n.p). We can hence 
calculate the expected numbers for each run 
length. From then it’s a short step to the chi- 

squared test. We shall use 10 buckets, hence 
there are nine degrees of freedom. Generally, 
we repeat the gap test for the irst and second 
halves of the 0.0 to 1.0 range, and for the irst, 
second and third thirds. 

The third test is known as the poker test. 
The random numbers are grouped into sets or 
‘hands’ of ive, and the numbers are converted 
into ‘cards’; each ‘card’ actually being a digit 
from 0 to nine. The number of different cards 
in each hand is then counted (it’ll be from one 
to ive), and this result is bucketed. Because 
the probability of only one digit being repeated 
ive times is so low, it’s generally grouped into 
the ‘two different digits’ category. Apply the 
chi-squared test to the four buckets; there will 
be three degrees of freedom. The probability 
for each bucket is somewhat dificult to 
calculate (and involves something called 
Stirling numbers), so I won’t attempt to 
explain it here.

The fourth test is the coupon collector’s 
test. The random numbers are read one by 
one and converted into a ‘coupon’, or a number 
from 0 to 4. The length of the sequence required 
to get a complete set of the coupons the digits 0 
to 4) is counted; this will obviously vary from 5 
upwards. Once a full set is obtained, we start 
over. We bucket the lengths of these sequences 
and then apply the chi-squared test to the 
buckets. We’ll use buckets for the sequence 
lengths from 5 to 19, and then have a composite 
bucket for every length after that. So, 16 buckets 
and hence 15 degrees of freedom. Again, like 
the poker test, the calculation of the probability 
for each bucket is somewhat mathematically 
intensive, so we won’t present it here.

There are many other tests that can be 
devised along these lines. The problem, in 
general, is how to calculate the expected 
values (that is, the probability) of each event 
because some of them require some fairly 
heavy-duty mathematics. Nevertheless, 
these statistical tests provide the best way 
to determine whether a particular random 
number sequence is really random or not. n

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express. 
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In 1995, George Marsaglia of Florida State 

University published the result of several years’ 

work on a CD-ROM. The work was in two parts: 

a huge table of random numbers (4.8 billion 

random bits), and a battery of statistical tests 

coded in C. Marsaglia had produced a good dozen 

new tests beyond those documented by Knuth 

(the simpler ones we demonstrate in the main 

article) and the random bits on the CD-ROM 

passed all those tests. The table of bits was 

produced by the best pseudo-random number 

generators laced with the output from hardware 

devices that produce random bits using 

radioactive materials or electronic noise. n

Perhaps the best modern pseudo-random 

number generator is the Mersenne twister 

algorithm, which was devised in 1997 by Makoto 

Matsumoto and Takuji Nishimura. It’s fast, has 

a quite astoundingly huge period (the count of 

random numbers generated before it repeats) 

of 10^6000 and passes all of Marsaglia’s Diehard 

randomness tests. It’s been implemented in the 

run-times for Python and Ruby, as well as 

applications like MATLAB. n

More randomness tests

The Mersenne twister

1 Figure 2: A bad random number plot in 2D. 

1 Table 2: Selected percentage points of the 

chi-squared distribution.

Degrees of 
freedom

1% 5% 95% 99%

1 0.000157 0.00393 3.84 6.63

2 0.0201 0.103 5.99 9.21

3 0.115 0.352 7.81 11.3

4 0.297 0.711 9.49 13.3

5 0.554 1.15 11.1 15.1
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