
Make it

Use logic to
solve Sudoku

 289 Christmas 2009 113

How do you solve – or create – a Sudoku
puzzle using programmer’s logic?

Solve
Sudoku

S
udoku puzzles. If you’ve ever spent any
time tackling them, I’m sure you’ve
come up with your own way of solving
them. But how does that translate to

a computer program? Is it worth translating
your hard-won algorithm directly to your
favourite language, or are there better ways
of solving a Sudoku puzzle? And having done
that, how do you go about creating a new one?
Even better, how do you rank them by difi culty
without having to solve them by hand?

The i rst time I came across Sudoku was
in a letter from my parents. They sent us some
newspaper clippings of some weird square
grids partially i lled in with numbers from
The Telegraph. For some reason, the UK caught
the Sudoku bug before we did in Colorado, and
these were the i rst examples I’d seen or even
heard of. We tried the puzzles out (carefully
photocopying them i rst, so we could both have
a go) and found that we liked them. Eventually,

a few months later, even our local paper started
carrying them. I found examples and programs
on the web, and the rest is history.

A brute-force technique
Once I’d perfected my own ‘mental’ algorithm
(my set of solving techniques, in other words),
I started wondering how to write a program
to solve a Sudoku grid. Like many before me,
I started off with the brute-force algorithm
through a depth-i rst technique.

The standard Sudoku puzzle is a grid of 9
x 9 squares (or ‘cells’), with some of the cells
containing a digit, and most being empty.
Furthermore, the grid is subdivided into nine
3 x 3 boxes. Your task is to i ll the empty cells
with the digits from 1 to 9 such that each row,
column and box contains exactly one of each
digit. Figure 1 shows a typical puzzle (this was
classii ed as ‘hard’ when I generated it, in case
you want to play). 3

PCP289.theory 113 26/10/09 4:04:21 pm

114 289 Christmas 2009

Make it Use logic to solve Sudoku

guess for the cell and moving onto
the next cell, we’re trying to move
ahead as fast as possible (increasing
the depth we travel from the irst
cell), and we only backtrack when
necessary. It’s as if the grid were
a maze, and we follow each path
until we can’t advance any more,
whereupon we go back to a place
where we can try the next path.

Depth-irst algorithms are
generally solved using a stack.
You push some state onto the stack
when you make a choice, and then,
in order to backtrack, all you need
to do is to pop off the previous state.
In the Sudoku-solving algorithm,
the state is pretty simple: it’s just
the ‘address’ of the cell that you’ve
just modiied.

For the cell address, the simplest
method is to use a number from 0

to 80, counting from the top-left cell along
each row and working your way down the
grid. So the irst row will have cells 0 to 8, the
second row 9 to 17, and so on. This addressing
scheme has another beneit: given a particular
cell address, it’s simple arithmetic to work out
the other cells in the same row and in the same
column. (For the row, divide the cell address by
9, dropping the remainder, then multiply by 9
to get the address of the irst cell in the row.
Other cells are then found by adding 1 each
time. For the column, divide by 9 and the
remainder is the address of the top cell in that
column. Other cells are then found by adding
9 each time.) The box cells are a little more
dificult, and it’s better to use a lookup table
to ind the top-left cell in the box. Other cells
can then be found by setting up and using
other tables (for instance, the top-left box
contains cells 0, 1, 2, 9, 10, 11, 18, 19 and 20).

Using this addressing scheme, the
algorithm goes like this. First, we set up an
array of 81 cells to either contain 0 (these cells
are empty) or the given digit from the original
puzzle. Then we:
1. Find the next empty cell.
2. If there are no more empty cells, we’re done.
3. If there is one, set this cell to 1.
4. Check that the row, column, and box for this

3

cell do not duplicate the number in the
current cell.

5. If the test passes, push the cell address onto
the stack and return to step 1.

6. If we have a duplicate, increment the value
in the current cell.

7. If the value in the cell is 9 or less, then go
to step 4.

8. Set the value in the cell to 0, pop off the
previous cell address (this will be the
current cell) and go to step 6.

The algorithm will exhaustively search the
solution space for the grid.

The problem with the algorithm is the
time taken. In general, it’s very fast – almost
instantaneous – but it’s fairly easy to construct
a pathological Sudoku puzzle grid that will
cause the algorithm to grind through more
backtracking than is strictly necessary and
thereby take a lot of time. As an example,
one could construct a grid where the irst
row is empty and the solution is 987654321:
the brute-force algorithm as described would
be backtracking like crazy.

To counter these pathological examples to
a certain extent (they’re essentially created by
hand to show off the problems with brute-force
solving), you can change the way you select the
next empty cell. Instead of routinely looking
for the next empty cell sequentially, you could
use an algorithm to select the next cell at
random. The easiest way of doing this in
practice is to create an array of all the empty
cells at the beginning, shufle this array and
then use the elements in sequential order of
the shufled array.

Of course, this algorithm assumes that the
puzzle has a solution. What if it doesn’t? The
problem will be that our stack of previously
visited ‘empty’ cells will become exhausted
and we won’t be able to pop an address off it.
We can either check for this condition explicitly
or we can push a ‘special’ cell address onto the
stack right at the beginning (say, cell address
-1) and if we pop it we know there’s no solution.
In either event, we’ve covered all eventualities.

Generating puzzles
Now that you have a working Sudoku puzzle
solver, it’s time to consider the problem of
generating your own Sudoku puzzles. If you
look in the newspapers and at the Sudoku

Spotlight on… Exact cover
Suppose you have a set of items and a

collection of subsets of that set. An exact

cover is a group of subsets from that collection,

such that every item from the original set can

be found in only one subset in that group. The

exact cover problem is how to determine if

such an exact cover exists and what it is.

The easiest way to visualise this is imagining

a matrix of 1s and 0s. Your task is to find a set of

rows from this matrix such that there is exactly

one 1 in each column. (Figure 3 shows a small

example.) The set of rows you find is known

as an ‘exact cover’. Finding the exact cover is

extremely hard to solve in general, and the

running time is exponential.

However, if the matrix is sparse enough,

it becomes possible to solve for the exact

cover in a reasonable time using an algorithm

invented by Donald Knuth called Dancing

Links. Solving a Sudoku puzzle is such a

problem, and Knuth showed how you could

convert a Sudoku puzzle into a 729 x 324

sparse matrix and then solve it for the exact

cover (the solution to the original puzzle). n

The brute-force technique goes something
like this. Find the irst empty cell (usually by
starting at the top-left corner). Put a ‘1’ in there.
Check to see whether that digit violates one of
the Sudoku rules (that is, check to see whether
there’s already a 1 in the same row, column or
box). If it’s valid, ind the next empty cell and
repeat the algorithm. If there’s a clash,
increment the digit you just added and do the
check again. Repeat this inner loop until either
you ind a valid digit for that cell – in which
case move on to the next empty cell – or you
ind that you’ve run out of digits to test.

In the latter case, you must backtrack to
the previous cell you illed in and increment
the digit you ind there, check and then move
forward again. Sometimes you’ll ind that you
backtrack several cells in a cascade. If the
puzzle has a solution, you’ll be sure to ind
it using this method.

Figure 2 shows the initial steps in a
brute-force algorithm to solve the puzzle in
Figure 1. I’ve indicated the choices made in
these irst steps by crossing digits out. Note
that by the time you reach the top-right cell,
there are no digits left that can go in there,
so you must backtrack.

This type of algorithm is known as a
‘depth-irst search’ algorithm. In setting a

Once computer programmers started writing

programs to create Sudoku puzzles, it was only a

matter of time before they investigated how hard

they could make the puzzles. Soon a category of

puzzles emerged that were deemed too hard (or

required logic that was too complex) for human

solvers. All of these puzzles required, at some

point, the solver to resort to trial-and-error in

order to finish the puzzle – in effect to guess

and to backtrack by hand, possibly several

times. Needless to say, these kinds of puzzles

would take an hour or more to solve manually. n

Diabolical puzzles

1 Figure 1: A typical hard Sudoku puzzle.

PCP289.theory 114 26/10/09 4:04:22 pm

 289 Christmas 2009 115

Use logic to solve Sudoku Make it

collections in book form, you’ll see that they
tend to have mirror symmetry about the centre
axes. For ease of describing an algorithm,
I decided to just use 180-degree rotational
symmetry about the centre. Here’s how to
generate a new puzzle using this deinition:
1. Select, at random, a number from 0 to 40

(cell 40 is the centre cell). Call this cell x.
2. Select at random a digit from 1 to 9 and

put it in cell x.
3. Providing that x is not 40, generate another

random digit and put it in cell (80 - x).
Because of the way we set up the cell
addressing system, you’ll ind that that
cell is rotationally opposite the irst.

4. Try and solve the puzzle with the solver.

Multiple solutions
Unfortunately, there’s a big problem with
this algorithm. Our solver only tests for two
outcomes: no solution or a solution. It doesn’t
check to see whether a puzzle actually has
more than one solution. As you can imagine,
therefore, merely putting two digits into an
empty grid is going to produce a puzzle with
many solutions.

As such, we need to run our solver in a
special mode when creating a puzzle. It must

not only report that the puzzle
has no solutions or one solution,
but it must also attempt to see
if the puzzle has more than one
solution to it. Note that we’re
really not interested in how many
solutions a puzzle has in the latter
case; we just need to see whether
we can ind a second one.

To do this, all we need to do is
to continue the brute-force search
after we ind the irst solution. That
is, once we ind (and signal) the irst
solution, we continue running the
solver as if that solution didn’t exist.

Once you have this tweaked
solver, the algorithm to create a
Sudoku puzzle works like this:
1. Select a cell from 0 to 40 (x).
If it’s empty, set it to a random
digit. Set the opposite cell (80
 - x) to another random digit.

(Again, if x is 40, there’s no opposite cell.)
2. Try and solve the puzzle.
3. If the puzzle has no solution, erase the grid

and go back to step 1.
4. If the puzzle has more than one solution,

go back to step 1.
5. You have a Sudoku puzzle with a unique

solution, so print it.

Now, I’ll admit step 3 is possibly overkill.
However, it’s much, much easier to implement
this than to, say, scrub out the last two cells you
randomly set and try again, since I would guess
there’s a possibility of having to backtrack a
couple of times.

Calculating difficulty
Now that you have a working Sudoku solver
(that is, an implementation that, given a
puzzle, will work out the solution to that
puzzle) and a way to create new puzzles, the
next problem is to mechanically decide on
the dificulty of a new puzzle.

As far as I can determine by looking at
several newspapers and books, puzzles are

categorised as easy, medium, hard and
diabolical, with ‘diabolical’ being reserved
for those puzzles where the human solver has
to make a guess at some point and either solve
the puzzle with that guess, or fail and make
another guess at the same point (in other
words, solving by trial and error).

As it happens, in all my research I haven’t
managed to ind a really good algorithm for
categorising the dificulty of Sudoku puzzles.
Equally, I would point out that human
categorising of Sudoku puzzles is not a well-
deined art either: some puzzles marked as
medium I’ve found easy, and some I’ve found
to be hard. It all depends on the cataloguer’s
own collection of solving techniques and how
yours differs from theirs.

There’s a program available called
Sudoku Explainer (www.bit.ly/SSQLs)
that solves Sudoku puzzles by reasoning as
a human solver would do. The program has
implementations of various techniques and
will explain how it solves a particular game
step by step. It will attempt to apply the
techniques it uses in order of complexity,
and in doing so will calculate the dificulty
of the puzzle according to the highest level
of technique it has to use.

Given our brute-force algorithm, how could
we determine dificulty? Here’s one possible
(and simple) algorithm: let the randomised
brute-force solver attack the same puzzle in
several separate runs. Since the randomiser
would calculate a different path through the
empty cells, it would solve the puzzle in a
different way each time. For each run, you
would count the number of backtrackings, so
that at the end you can calculate the average.

Although the brute-force algorithm
in no way mimics the way a human solver
would solve a Sudoku puzzle, there might
be some correlation between the number of
backtrackings and the dificulty level as set by
a human puzzle compiler. I will also note that
the number of backtrackings would seem to be
correlated with the number of illed cells in the
original puzzle: the fewer the number of illed
cells, the harder, in theory, the puzzle. n

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

The very earliest grid number puzzles (involving

the removal of numbers from magic squares)

appear to have been created by French compilers

in the late 19th century, but the more modern

Sudoku was probably invented (although not

given that name) by Howard Garns in 1979.

These early puzzles were introduced into Japan

in 1984 and given a ridiculously long name which

was eventually shortened to Sudoku (or SuDoKu).

These puzzles were introduced around the world

in 2005, and from these beginnings they became

the huge global hit they are today. n

Given the popularity of Sudoku, several variants

have been devised. The one that looks most like

Sudoku itself is known as Killer Sudoku. It has the

same 9 x 9 grid divided into boxes, but now cells

are divided into ‘cages’ (a region of contiguous

cells) with the sum of the cells in the cage printed

within it. Generally, no cells are pre-filled. The

solver has to use arithmetic as well as standard

Sudoku techniques in order to solve the puzzle.

Another variant is Kakuro, which looks a bit like a

crossword. In this case, the clues are sums of the

digits in the cells for the entries. The answers to

the clues cannot contain duplicated digits. Again,

the solver has to use arithmetic as well as logic to

solve the puzzle. n

The history of Sudoku

Sudoku variants

1 Figure 2: Initial steps to solve the hard puzzle by brute force.

1 Figure 3: A simple exact cover problem: rows 2,

3 and 6 cover the columns exactly.

PCP289.theory 115 26/10/09 4:04:23 pm

