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How do you solve – or create – a Sudoku 
puzzle using programmer’s logic?

Solve 
Sudoku

S
udoku puzzles. If you’ve ever spent any 
time tackling them, I’m sure you’ve 
come up with your own way of solving 
them. But how does that translate to 

a computer program? Is it worth translating 
your hard-won algorithm directly to your 
favourite language, or are there better ways 
of solving a Sudoku puzzle? And having done 
that, how do you go about creating a new one? 
Even better, how do you rank them by difi culty 
without having to solve them by hand?

The i rst time I came across Sudoku was 
in a letter from my parents. They sent us some 
newspaper clippings of some weird square 
grids partially i lled in with numbers from 
The Telegraph. For some reason, the UK caught 
the Sudoku bug before we did in Colorado, and 
these were the i rst examples I’d seen or even 
heard of. We tried the puzzles out (carefully 
photocopying them i rst, so we could both have 
a go) and found that we liked them. Eventually, 

a few months later, even our local paper started 
carrying them. I found examples and programs 
on the web, and the rest is history.

A brute-force technique
Once I’d perfected my own ‘mental’ algorithm 
(my set of solving techniques, in other words), 
I started wondering how to write a program 
to solve a Sudoku grid. Like many before me, 
I started off with the brute-force algorithm 
through a depth-i rst technique.

The standard Sudoku puzzle is a grid of 9 
x 9 squares (or ‘cells’), with some of the cells 
containing a digit, and most being empty. 
Furthermore, the grid is subdivided into nine 
3 x 3 boxes. Your task is to i ll the empty cells 
with the digits from 1 to 9 such that each row, 
column and box contains exactly one of each 
digit. Figure 1 shows a typical puzzle (this was 
classii ed as ‘hard’ when I generated it, in case 
you want to play). 3
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guess for the cell and moving onto 
the next cell, we’re trying to move 
ahead as fast as possible (increasing 
the depth we travel from the irst 
cell), and we only backtrack when 
necessary. It’s as if the grid were 
a maze, and we follow each path 
until we can’t advance any more, 
whereupon we go back to a place 
where we can try the next path.

Depth-irst algorithms are 
generally solved using a stack. 
You push some state onto the stack 
when you make a choice, and then, 
in order to backtrack, all you need 
to do is to pop off the previous state. 
In the Sudoku-solving algorithm, 
the state is pretty simple: it’s just 
the ‘address’ of the cell that you’ve 
just modiied. 

For the cell address, the simplest 
method is to use a number from 0 

to 80, counting from the top-left cell along 
each row and working your way down the 
grid. So the irst row will have cells 0 to 8, the 
second row 9 to 17, and so on. This addressing 
scheme has another beneit: given a particular 
cell address, it’s simple arithmetic to work out 
the other cells in the same row and in the same 
column. (For the row, divide the cell address by 
9, dropping the remainder, then multiply by 9 
to get the address of the irst cell in the row. 
Other cells are then found by adding 1 each 
time. For the column, divide by 9 and the 
remainder is the address of the top cell in that 
column. Other cells are then found by adding 
9 each time.) The box cells are a little more 
dificult, and it’s better to use a lookup table 
to ind the top-left cell in the box. Other cells 
can then be found by setting up and using 
other tables (for instance, the top-left box 
contains cells 0, 1, 2, 9, 10, 11, 18, 19 and 20).

Using this addressing scheme, the 
algorithm goes like this. First, we set up an 
array of 81 cells to either contain 0 (these cells 
are empty) or the given digit from the original 
puzzle. Then we:
1. Find the next empty cell. 
2. If there are no more empty cells, we’re done.
3. If there is one, set this cell to 1.
4. Check that the row, column, and box for this 

3

cell do not duplicate the number in the 
current cell.

5. If the test passes, push the cell address onto 
the stack and return to step 1.

6. If we have a duplicate, increment the value 
in the current cell.

7. If the value in the cell is 9 or less, then go 
to step 4.

8. Set the value in the cell to 0, pop off the 
previous cell address (this will be the 
current cell) and go to step 6.

The algorithm will exhaustively search the 
solution space for the grid.

The problem with the algorithm is the 
time taken. In general, it’s very fast – almost 
instantaneous – but it’s fairly easy to construct 
a pathological Sudoku puzzle grid that will 
cause the algorithm to grind through more 
backtracking than is strictly necessary and 
thereby take a lot of time. As an example, 
one could construct a grid where the irst 
row is empty and the solution is 987654321: 
the brute-force algorithm as described would 
be backtracking like crazy. 

To counter these pathological examples to 
a certain extent (they’re essentially created by 
hand to show off the problems with brute-force 
solving), you can change the way you select the 
next empty cell. Instead of routinely looking 
for the next empty cell sequentially, you could 
use an algorithm to select the next cell at 
random. The easiest way of doing this in 
practice is to create an array of all the empty 
cells at the beginning, shufle this array and 
then use the elements in sequential order of 
the shufled array.

Of course, this algorithm assumes that the 
puzzle has a solution. What if it doesn’t? The 
problem will be that our stack of previously 
visited ‘empty’ cells will become exhausted 
and we won’t be able to pop an address off it. 
We can either check for this condition explicitly 
or we can push a ‘special’ cell address onto the 
stack right at the beginning (say, cell address 
-1) and if we pop it we know there’s no solution. 
In either event, we’ve covered all eventualities.

Generating puzzles
Now that you have a working Sudoku puzzle 
solver, it’s time to consider the problem of 
generating your own Sudoku puzzles. If you 
look in the newspapers and at the Sudoku 

Spotlight on… Exact cover
Suppose you have a set of items and a 

collection of subsets of that set. An exact 

cover is a group of subsets from that collection, 

such that every item from the original set can 

be found in only one subset in that group. The 

exact cover problem is how to determine if 

such an exact cover exists and what it is. 

The easiest way to visualise this is imagining 

a matrix of 1s and 0s. Your task is to find a set of 

rows from this matrix such that there is exactly 

one 1 in each column. (Figure 3 shows a small 

example.) The set of rows you find is known 

as an ‘exact cover’. Finding the exact cover is 

extremely hard to solve in general, and the 

running time is exponential.

However, if the matrix is sparse enough, 

it becomes possible to solve for the exact 

cover in a reasonable time using an algorithm 

invented by Donald Knuth called Dancing 

Links. Solving a Sudoku puzzle is such a 

problem, and Knuth showed how you could 

convert a Sudoku puzzle into a 729 x 324 

sparse matrix and then solve it for the exact 

cover (the solution to the original puzzle). n

The brute-force technique goes something 
like this. Find the irst empty cell (usually by 
starting at the top-left corner). Put a ‘1’ in there. 
Check to see whether that digit violates one of 
the Sudoku rules (that is, check to see whether 
there’s already a 1 in the same row, column or 
box). If it’s valid, ind the next empty cell and 
repeat the algorithm. If there’s a clash, 
increment the digit you just added and do the 
check again. Repeat this inner loop until either 
you ind a valid digit for that cell – in which 
case move on to the next empty cell – or you 
ind that you’ve run out of digits to test. 

In the latter case, you must backtrack to 
the previous cell you illed in and increment 
the digit you ind there, check and then move 
forward again. Sometimes you’ll ind that you 
backtrack several cells in a cascade. If the 
puzzle has a solution, you’ll be sure to ind 
it using this method.

Figure 2 shows the initial steps in a 
brute-force algorithm to solve the puzzle in 
Figure 1. I’ve indicated the choices made in 
these irst steps by crossing digits out. Note 
that by the time you reach the top-right cell, 
there are no digits left that can go in there, 
so you must backtrack.

This type of algorithm is known as a 
‘depth-irst search’ algorithm. In setting a 

Once computer programmers started writing 

programs to create Sudoku puzzles, it was only a 

matter of time before they investigated how hard 

they could make the puzzles. Soon a category of 

puzzles emerged that were deemed too hard (or 

required logic that was too complex) for human 

solvers. All of these puzzles required, at some 

point, the solver to resort to trial-and-error in 

order to finish the puzzle – in effect to guess 

and to backtrack by hand, possibly several 

times. Needless to say, these kinds of puzzles 

would take an hour or more to solve manually. n

Diabolical puzzles

1 Figure 1: A typical hard Sudoku puzzle.
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collections in book form, you’ll see that they 
tend to have mirror symmetry about the centre 
axes. For ease of describing an algorithm, 
I decided to just use 180-degree rotational 
symmetry about the centre. Here’s how to 
generate a new puzzle using this deinition:
1. Select, at random, a number from 0 to 40 

(cell 40 is the centre cell). Call this cell x. 
2. Select at random a digit from 1 to 9 and 

put it in cell x. 
3. Providing that x is not 40, generate another 

random digit and put it in cell (80 - x). 
Because of the way we set up the cell 
addressing system, you’ll ind that that 
cell is rotationally opposite the irst.

4. Try and solve the puzzle with the solver.

Multiple solutions
Unfortunately, there’s a big problem with 
this algorithm. Our solver only tests for two 
outcomes: no solution or a solution. It doesn’t 
check to see whether a puzzle actually has 
more than one solution. As you can imagine, 
therefore, merely putting two digits into an 
empty grid is going to produce a puzzle with 
many solutions.

As such, we need to run our solver in a 
special mode when creating a puzzle. It must 

not only report that the puzzle 
has no solutions or one solution, 
but it must also attempt to see 
if the puzzle has more than one 
solution to it. Note that we’re 
really not interested in how many 
solutions a puzzle has in the latter 
case; we just need to see whether 
we can ind a second one. 

To do this, all we need to do is 
to continue the brute-force search 
after we ind the irst solution. That 
is, once we ind (and signal) the irst 
solution, we continue running the 
solver as if that solution didn’t exist. 

Once you have this tweaked 
solver, the algorithm to create a 
Sudoku puzzle works like this:
1. Select a cell from 0 to 40 (x). 
If it’s empty, set it to a random 
digit. Set the opposite cell (80 
 - x) to another random digit. 

(Again, if x is 40, there’s no opposite cell.) 
2. Try and solve the puzzle.
3. If the puzzle has no solution, erase the grid 

and go back to step 1.
4. If the puzzle has more than one solution, 

go back to step 1.
5. You have a Sudoku puzzle with a unique 

solution, so print it.

Now, I’ll admit step 3 is possibly overkill. 
However, it’s much, much easier to implement 
this than to, say, scrub out the last two cells you 
randomly set and try again, since I would guess 
there’s a possibility of having to backtrack a 
couple of times.

Calculating difficulty
Now that you have a working Sudoku solver 
(that is, an implementation that, given a 
puzzle, will work out the solution to that 
puzzle) and a way to create new puzzles, the 
next problem is to mechanically decide on 
the dificulty of a new puzzle. 

As far as I can determine by looking at 
several newspapers and books, puzzles are 

categorised as easy, medium, hard and 
diabolical, with ‘diabolical’ being reserved 
for those puzzles where the human solver has 
to make a guess at some point and either solve 
the puzzle with that guess, or fail and make 
another guess at the same point (in other 
words, solving by trial and error).

As it happens, in all my research I haven’t 
managed to ind a really good algorithm for 
categorising the dificulty of Sudoku puzzles. 
Equally, I would point out that human 
categorising of Sudoku puzzles is not a well- 
deined art either: some puzzles marked as 
medium I’ve found easy, and some I’ve found 
to be hard. It all depends on the cataloguer’s 
own collection of solving techniques and how 
yours differs from theirs.

There’s a program available called 
Sudoku Explainer (www.bit.ly/SSQLs) 
that solves Sudoku puzzles by reasoning as 
a human solver would do. The program has 
implementations of various techniques and 
will explain how it solves a particular game 
step by step. It will attempt to apply the 
techniques it uses in order of complexity, 
and in doing so will calculate the dificulty 
of the puzzle according to the highest level 
of technique it has to use. 

Given our brute-force algorithm, how could 
we determine dificulty? Here’s one possible 
(and simple) algorithm: let the randomised 
brute-force solver attack the same puzzle in 
several separate runs. Since the randomiser 
would calculate a different path through the 
empty cells, it would solve the puzzle in a 
different way each time. For each run, you 
would count the number of backtrackings, so 
that at the end you can calculate the average. 

Although the brute-force algorithm 
in no way mimics the way a human solver 
would solve a Sudoku puzzle, there might 
be some correlation between the number of 
backtrackings and the dificulty level as set by 
a human puzzle compiler. I will also note that 
the number of backtrackings would seem to be 
correlated with the number of illed cells in the 
original puzzle: the fewer the number of illed 
cells, the harder, in theory, the puzzle. n

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express.
feedback@pcplus.co.uk

The very earliest grid number puzzles (involving 

the removal of numbers from magic squares) 

appear to have been created by French compilers 

in the late 19th century, but the more modern 

Sudoku was probably invented (although not 

given that name) by Howard Garns in 1979. 

These early puzzles were introduced into Japan 

in 1984 and given a ridiculously long name which 

was eventually shortened to Sudoku (or SuDoKu). 

These puzzles were introduced around the world 

in 2005, and from these beginnings they became 

the huge global hit they are today. n

Given the popularity of Sudoku, several variants 

have been devised. The one that looks most like 

Sudoku itself is known as Killer Sudoku. It has the 

same 9 x 9 grid divided into boxes, but now cells 

are divided into ‘cages’ (a region of contiguous 

cells) with the sum of the cells in the cage printed 

within it. Generally, no cells are pre-filled. The 

solver has to use arithmetic as well as standard 

Sudoku techniques in order to solve the puzzle.

Another variant is Kakuro, which looks a bit like a 

crossword. In this case, the clues are sums of the 

digits in the cells for the entries. The answers to 

the clues cannot contain duplicated digits. Again, 

the solver has to use arithmetic as well as logic to 

solve the puzzle. n

The history of Sudoku

Sudoku variants

1 Figure 2: Initial steps to solve the hard puzzle by brute force. 

1 Figure 3: A simple exact cover problem: rows 2, 

3 and 6 cover the columns exactly.
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