
Make it

Explore neural
networks

 288 December 2009 113

How we go about mimicking the brain’s neurons in code

The thinking behind
neural networks

W
e’ve all got a very sophisticated
processing unit – the brain – that
can perform some remarkable
tasks. Despite their speed and

memory capacity, silicon-based computers
struggle to emulate it. The branch of computer
science called Artii cial Intelligence tries to
narrow the gap, and one of the basic tools of
AI is the neural network. So let’s take a look
at what the neural network can do.

Over the years, Artii cial Intelligence has
had its ups and downs. Generally there would
be a period of ‘up’ when, after a short run of
successful papers, researchers would start
making prognostications about their discipline
that would grow ever more fanciful. This would
naturally lead to a period of ‘down’ when these
predictions did not come to pass.

However, just as spin-off software from the
space program have made their way into retail
products, spin-offs from AI are becoming part
of our lives through intelligent software, even
though we may not recognise it as such.

Keeping it real
One fairly recent example that comes to mind
is the ability of some point-and-shoot cameras
to detect when a face is in shot and hence focus
on that face. The face detection software is

remarkably fast and rarely wrong, so when
taking portraits with these cameras it’s easy
to trust that the faces of the subjects will be
in focus and exposed correctly.

Apple’s new version of its iPhoto app goes
one step further: it includes face recognition
software. Import your photos into iPhoto, and
it will detect faces. It’s then able to recognise
the same faces in different photos. Once you’ve
‘named’ the face, iPhoto will annotate the
picture with the faces it recognises.

Another business-oriented application of
AI algorithms is voice recognition in programs
like Dragon Naturally Speaking and OSes like
Windows 7. Some cars that include optional
‘Technology’ packages also have voice
recognition for controlling the car’s interior
functions like the radio or the heating. (I’ve
given up talking to my car: since I’m British
but living in the States, the car’s voice
recognition software doesn’t ‘get’ my voice,
perhaps because it’s optimised for a US accent.)

Yet another example is OCR (Optical
Character Recognition). Here the state of
play is quite remarkable, with the top-end
packages declaring over 99 per cent accuracy
for typewritten or typeset text. Even the old
Palm Pilot PDAs had very constrained – yet
very successful – handwriting recognition 3

PCP288.theory 113 1/10/09 3:46:22 pm

Make it Explore neural networks

114 288 December 2009

across the synaptic gap, or about the myriad
other processes in the cell) we have:

a set of input signals coming into the cell •
from other cells;
if the sum of the signals reaches a threshold, •
the cell ires its own signal;
the output signal from a cell will become •
the input signal to several other cells.

So, in short: inputs, summation and, if above
threshold, output. Sounds computer-like.

In the human brain there are roughly
20 billion neurons (the number depends on
various factors, including age and gender).
Each neuron will be connected through
synapses to roughly 10,000 other neurons.
The brain is a giant, complicated network of

3

dendritic connections. Unlike computers, it’s
massively parallel: computations are going on
all over the brain. It boggles the mind how
complex it is – indeed, how it works at all.

So let’s draw back from the brink and look
at how we might mimic this in computing.

Replicating nature
Sadly, there’s no way we can mimic 20 billion
neurons with 10,000 connections each, but
there are several interesting things we can do
with much less irepower. Way back in 1957,
Frank Rosenblatt modelled a single neuron
with something he called a ‘perceptron’, and
used it to investigate pattern recognition.
Unfortunately, the perceptron was unable
to recognise even simple functions like XOR
(proved formally by Marvin Minsky and
Seymour Papert in 1969) and so it was
abandoned in favour of something called
multilayer feedforward networks. Nevertheless
we can use many of the concepts associated
with the perceptron later on.

Figure 2 shows a standard perceptron.
We have a set of inputs on the left-hand side.
Each input has a ‘weight’ associated with it.
Each input signal (which is a loating-point
value, positive or negative) is multiplied by its
weight (another loating-point value). All of
these products are summed. If the sum exceeds
a threshold value (generally 0), the perceptron
outputs 1 (or ‘true’). If the threshold is not
exceeded, the perceptron outputs 0 (or ‘false’).
This test is known as the activation function.

To help with the process, another ixed
input is usually provided (known as the ‘bias’).
This models the propensity of the perceptron
to ire in spite of the values of its inputs. The
bias is normally 1 and will have its own weight.

All this is very well, but where do the
weights come from? The inputs are obviously
provided by us in some form, but who provides
the weights? Look at it like this. Suppose we
want a perceptron to calculate the same result
as the AND operation. There will be two
inputs to this perception, A and B. Each input
will be constrained to two possible values, 0
and 1. If both A and B equal 1, the perceptron
should output 1; otherwise it should output 0.
We have to determine three weights here: the
weights for A and B and the bias. Once we have
these, we should be able to run the perceptron,

Spotlight on… Reinforcement learning
There are two main methods of training

a network: supervised learning and

reinforcement learning. Back propagation is

a standard method for supervised learning:

the net provides information (the error from

a training set) that is then fed back into the

neural network to improve the weights and

thereby cause the network to learn from the

training sets. This is akin to teaching a child the

word ‘chair’ by showing them several different

objects that are chairs, and several that are

not. Reinforcement learning, on the other

hand, stems from a different environment.

The environment is dynamic, and the

network must learn on the fly. The example

of this is in a gaming environment, where the

network is playing against other players and

the whole environment is in a state of flux.

Here the outputs from the network provide

a reinforcement signal (good or bad). This is

akin to a child learning that the stove top can

be hot: every time the child touches the hot

stove they get a negative reinforcement signal.

They soon learn not to touch stoves. n

software; once you’d trained yourself to write
the modiied characters, the PDA recognised
them as swiftly as you could write them.

Although these AI applications use many
different techniques to do their magic, there is
a very fundamental building block called the
neural network, from which many of these
techniques are but reinements.

How it works
Before we can get an appreciation of what
a neural network does, we should look at the
biological background from which it is derived.
If you looked at a brain in a microscope you’d
see that it consists of specialised cells called
neurons. Neurons (Figure 1) are peculiar cells
indeed. The main body of the neuron is called
the soma, and it has a veritable forest of
dendrites through which input signals arrive.
If the number of incoming signals is suficient,
the difference in voltage potential will cause
the axon hillock to ire its own signal down
the axon, a comparatively long extension of
the cell. The axon branches out towards the
end, and at the end of each branch is a synapse
that connects to a dendrite of another neuron.
The signal travels through the synapse (we talk
of the synapse iring) into the dendrite and this
signal then participates in whether the next
neuron ires or not.

So, boiling this down to the absolute
fundamentals (without worrying about the
chemical processes that help the signal travel

7 Figure 1: A stylised

view of a neuron.

1 Figure 2: A perceptron with two inputs.

PCP288.theory 114 1/10/09 3:46:24 pm

Explore neural networks Make it

 288 December 2009 115

and it should produce the correct outputs
for the four possible combinations of input.

The only way of doing this is to train the
perceptron. First thing we need is a set of
inputs and their expected outputs. For our
simple example, we have four training sets:
1 and 1 gives 1, 0 and 1 gives 0, 0 and 0 gives
0, and 1 and 0 gives 0.

We set all weights to zero. Note that this
perceptron will produce the right answer for
the last three training sets automatically.
The irst set will produce an error (it should
produce 1, but gives 0, an error of 1). What
we do now is to modify the weights to take
account of the error. We make use of a new
constant called the learning rate (a number
between 0 and 1) and modify each weight to
add a term that’s proportional to the error
value, the learning rate and its input value.
Start off with a high rate (say, 0.8).

We then let the perceptron learn using its
training materials until the weights stabilise.
If the weights don’t converge after a few
iterations, the perceptron is possibly oscillating
around the solution, so it’s best to reduce the
learning rate. If the weights never converge,
then the function being modelled by the
perceptron cannot be recognised.

After Minsky and Papert showed that a
single perceptron couldn’t solve some simple
patterns, research stagnated. Eventually,
efforts shifted to studying a multilayer system
instead. The irst such system was called the
feedforward neural network.

In a multilayer system of perceptrons, there
are at least three layers: the input layer, the
hidden layer and the output layer. The latter
two layers are the perceptrons. Figure 3 shows
an idealised view of such a network. Notice
that the data or signals travel one way, from
the input layer to the output layer, hence the
term feedforward. There are no cycles here.

The hidden layer is shown here to have
three perceptrons, but this is by no means a
ixed number. Indeed, the number of hidden
perceptrons is yet another ‘knob’ to twiddle
to tune the neural network (the weights being
the only knobs so far). The number of output
perceptrons is a function of the pattern you’re
trying to recognise, so if you were trying to
perform OCR on digits, you might have 10
output perceptrons, one for each digit. Notice
that all of the input signals feed into all of the
perceptrons in the hidden layer, and all the
outputs from the perceptrons in the hidden
layer feed into the perceptrons in the output
layer. If an input for a perceptron is not
needed, the weight will be set to zero.

Finer tuning
The big issue with this neural network is in
training it. The most successful algorithm
devised is known as the back-propagation
training algorithm, but it requires some
changes. The irst change is that the

perceptron should output not
just a 0 or a 1, but a loating-point
value between 0 and 1. This will
in turn require the perceptron to
use a different activation function,
one that’s a curve instead of being
a step function.

The functions used here are
known as sigmoid functions.
These are S-shaped functions
with asymptotes at 0 and at 1.
Figure 4 shows the standard one
that’s used: f(x) = 1/(1+e-x), but
others include the hyperbolic
tangent (tanh) or the error
function (erf). If a perceptron
calculates a very large sum of its
weighted inputs, it’ll output a
value close to 1; if the sum is very
large and negative, it’ll output a

value close to 0; if it’s close to 0, the
perceptron will output a value around 0.5.

Once these changes have been made, the
network is ‘differentiable’; that is, it’s possible
to calculate gradients. The gradients we want
to calculate are to help us change the weights
due to a training error: a steep gradient for an
input signal means a larger change in its weight,
a more gradual gradient means a smaller
change. The gradient also gives a direction
(upwards or downwards), so we know whether
to add or subtract the correction term.

And all this means that, despite the much
greater complexity of a feedforward neural
network, training it still only requires a few
cycles. Obviously you have to pre-calculate
a catalogue of training sets (so, for example,
if you were creating a neural network to
recognise the digits using OCR, you’d use as
many different variants of the digits using all
the fonts you could ind), and those training
sets would be fed into the network as often
as needed until the weights converged.

Of course, this time around, you would
have the extra knob to twiddle: the number
of hidden perceptrons. Here there are no real
guidelines apart from the more of them there
are, the longer it will take to train the network,
and you may not gain any more accuracy.
Generally, though, you would aim for having
at least as many hidden perceptrons as you
have perceptrons in the output layer. n

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

Another type of neural network that works on

entirely different principles is the Kohonen map.

For example, instead of showing the network data

chairs and tables and telling it which is which, we

just show it everything and ask it to sort it out

itself (unsupervised learning). The network

clusters the data according to size, whether the

furniture has arms or a back or not, and so on. If

all goes as planned, the data will naturally cluster

into ‘chair-like’ and ‘table-like’. This is the basis of

the self-organising Kohonen map. n

The main method for training a neural network

is back-propagation. For certain networks, a

different algorithm may prove more efficient: a

genetic one. Here we apply the standard genetic

optimisation techniques (using chromosome

fitness selection and introducing changes due

to crossovers and mutations) to the weights in

the network. After a few generations, the weights

will converge. This type of training is of greater

benefit for learning environments where the

network must learn on the fly. n

The Kohonen map

Genetic algorithms

1 Figure 3: A feedforward network with three hidden perceptrons.

1 Figure 4: The curve produced by a standard sigmoid function.

PCP288.theory 115 1/10/09 3:46:26 pm

