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How we go about mimicking the brain’s neurons in code

The thinking behind 
neural networks

W
e’ve all got a very sophisticated 
processing unit – the brain – that 
can perform some remarkable 
tasks. Despite their speed and 

memory capacity, silicon-based computers 
struggle to emulate it. The branch of computer 
science called Artii cial Intelligence tries to 
narrow the gap, and one of the basic tools of 
AI is the neural network. So let’s take a look 
at what the neural network can do.

Over the years, Artii cial Intelligence has 
had its ups and downs. Generally there would 
be a period of ‘up’ when, after a short run of 
successful papers, researchers would start 
making prognostications about their discipline 
that would grow ever more fanciful. This would 
naturally lead to a period of ‘down’ when these 
predictions did not come to pass. 

However, just as spin-off software from the 
space program have made their way into retail 
products, spin-offs from AI are becoming part 
of our lives through intelligent software, even 
though we may not recognise it as such.

Keeping it real
One fairly recent example that comes to mind 
is the ability of some point-and-shoot cameras 
to detect when a face is in shot and hence focus 
on that face. The face detection software is 

remarkably fast and rarely wrong, so when 
taking portraits with these cameras it’s easy 
to trust that the faces of the subjects will be 
in focus and exposed correctly. 

Apple’s new version of its iPhoto app goes 
one step further: it includes face recognition 
software. Import your photos into iPhoto, and 
it will detect faces. It’s then able to recognise 
the same faces in different photos. Once you’ve 
‘named’ the face, iPhoto will annotate the 
picture with the faces it recognises. 

Another business-oriented application of 
AI algorithms is voice recognition in programs 
like Dragon Naturally Speaking and OSes like 
Windows 7. Some cars that include optional 
‘Technology’ packages also have voice 
recognition for controlling the car’s interior 
functions like the radio or the heating. (I’ve 
given up talking to my car: since I’m British 
but living in the States, the car’s voice 
recognition software doesn’t ‘get’ my voice, 
perhaps because it’s optimised for a US accent.)

Yet another example is OCR (Optical 
Character Recognition). Here the state of 
play is quite remarkable, with the top-end 
packages declaring over 99 per cent accuracy 
for typewritten or typeset text. Even the old 
Palm Pilot PDAs had very constrained – yet 
very successful – handwriting recognition 3
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across the synaptic gap, or about the myriad 
other processes in the cell) we have:

a set of input signals coming into the cell • 
from other cells;
if the sum of the signals reaches a threshold, • 
the cell ires its own signal;
the output signal from a cell will become • 
the input signal to several other cells.

So, in short: inputs, summation and, if above 
threshold, output. Sounds computer-like. 

In the human brain there are roughly 
20 billion neurons (the number depends on 
various factors, including age and gender). 
Each neuron will be connected through 
synapses to roughly 10,000 other neurons. 
The brain is a giant, complicated network of 

3

dendritic connections. Unlike computers, it’s 
massively parallel: computations are going on 
all over the brain. It boggles the mind how 
complex it is – indeed, how it works at all.

So let’s draw back from the brink and look 
at how we might mimic this in computing.

Replicating nature
Sadly, there’s no way we can mimic 20 billion 
neurons with 10,000 connections each, but 
there are several interesting things we can do 
with much less irepower. Way back in 1957, 
Frank Rosenblatt modelled a single neuron 
with something he called a ‘perceptron’, and 
used it to investigate pattern recognition. 
Unfortunately, the perceptron was unable 
to recognise even simple functions like XOR 
(proved formally by Marvin Minsky and 
Seymour Papert in 1969) and so it was 
abandoned in favour of something called 
multilayer feedforward networks. Nevertheless 
we can use many of the concepts associated 
with the perceptron later on. 

Figure 2 shows a standard perceptron. 
We have a set of inputs on the left-hand side. 
Each input has a ‘weight’ associated with it. 
Each input signal (which is a loating-point 
value, positive or negative) is multiplied by its 
weight (another loating-point value). All of 
these products are summed. If the sum exceeds 
a threshold value (generally 0), the perceptron 
outputs 1 (or ‘true’). If the threshold is not 
exceeded, the perceptron outputs 0 (or ‘false’). 
This test is known as the activation function.

To help with the process, another ixed 
input is usually provided (known as the ‘bias’). 
This models the propensity of the perceptron 
to ire in spite of the values of its inputs. The 
bias is normally 1 and will have its own weight.

All this is very well, but where do the 
weights come from? The inputs are obviously 
provided by us in some form, but who provides 
the weights? Look at it like this. Suppose we 
want a perceptron to calculate the same result 
as the AND operation. There will be two 
inputs to this perception, A and B. Each input 
will be constrained to two possible values, 0 
and 1. If both A and B equal 1, the perceptron 
should output 1; otherwise it should output 0. 
We have to determine three weights here: the 
weights for A and B and the bias. Once we have 
these, we should be able to run the perceptron, 

Spotlight on… Reinforcement learning
There are two main methods of training 

a network: supervised learning and 

reinforcement learning. Back propagation is 

a standard method for supervised learning: 

the net provides information (the error from 

a training set) that is then fed back into the 

neural network to improve the weights and 

thereby cause the network to learn from the 

training sets. This is akin to teaching a child the 

word ‘chair’ by showing them several different 

objects that are chairs, and several that are 

not. Reinforcement learning, on the other 

hand, stems from a different environment. 

The environment is dynamic, and the 

network must learn on the fly. The example 

of this is in a gaming environment, where the 

network is playing against other players and 

the whole environment is in a state of flux. 

Here the outputs from the network provide 

a reinforcement signal (good or bad). This is 

akin to a child learning that the stove top can 

be hot: every time the child touches the hot 

stove they get a negative reinforcement signal. 

They soon learn not to touch stoves. n

software; once you’d trained yourself to write 
the modiied characters, the PDA recognised 
them as swiftly as you could write them.

Although these AI applications use many 
different techniques to do their magic, there is 
a very fundamental building block called the 
neural network, from which many of these 
techniques are but reinements. 

How it works
Before we can get an appreciation of what 
a neural network does, we should look at the 
biological background from which it is derived. 
If you looked at a brain in a microscope you’d 
see that it consists of specialised cells called 
neurons. Neurons (Figure 1) are peculiar cells 
indeed. The main body of the neuron is called 
the soma, and it has a veritable forest of 
dendrites through which input signals arrive. 
If the number of incoming signals is suficient, 
the difference in voltage potential will cause 
the axon hillock to ire its own signal down 
the axon, a comparatively long extension of 
the cell. The axon branches out towards the 
end, and at the end of each branch is a synapse 
that connects to a dendrite of another neuron. 
The signal travels through the synapse (we talk 
of the synapse iring) into the dendrite and this 
signal then participates in whether the next 
neuron ires or not.

So, boiling this down to the absolute 
fundamentals (without worrying about the 
chemical processes that help the signal travel 

7 Figure 1: A stylised 

view of a neuron.

1 Figure 2: A perceptron with two inputs. 
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and it should produce the correct outputs 
for the four possible combinations of input.

The only way of doing this is to train the 
perceptron. First thing we need is a set of 
inputs and their expected outputs. For our 
simple example, we have four training sets: 
1 and 1 gives 1, 0 and 1 gives 0, 0 and 0 gives 
0, and 1 and 0 gives 0.

We set all weights to zero. Note that this 
perceptron will produce the right answer for 
the last three training sets automatically. 
The irst set will produce an error (it should 
produce 1, but gives 0, an error of 1). What 
we do now is to modify the weights to take 
account of the error. We make use of a new 
constant called the learning rate (a number 
between 0 and 1) and modify each weight to 
add a term that’s proportional to the error 
value, the learning rate and its input value. 
Start off with a high rate (say, 0.8).

We then let the perceptron learn using its 
training materials until the weights stabilise. 
If the weights don’t converge after a few 
iterations, the perceptron is possibly oscillating 
around the solution, so it’s best to reduce the 
learning rate. If the weights never converge, 
then the function being modelled by the 
perceptron cannot be recognised.

After Minsky and Papert showed that a 
single perceptron couldn’t solve some simple 
patterns, research stagnated. Eventually, 
efforts shifted to studying a multilayer system 
instead. The irst such system was called the 
feedforward neural network.

In a multilayer system of perceptrons, there 
are at least three layers: the input layer, the 
hidden layer and the output layer. The latter 
two layers are the perceptrons. Figure 3 shows 
an idealised view of such a network. Notice 
that the data or signals travel one way, from 
the input layer to the output layer, hence the 
term feedforward. There are no cycles here.

The hidden layer is shown here to have 
three perceptrons, but this is by no means a 
ixed number. Indeed, the number of hidden 
perceptrons is yet another ‘knob’ to twiddle 
to tune the neural network (the weights being 
the only knobs so far). The number of output 
perceptrons is a function of the pattern you’re 
trying to recognise, so if you were trying to 
perform OCR on digits, you might have 10 
output perceptrons, one for each digit. Notice 
that all of the input signals feed into all of the 
perceptrons in the hidden layer, and all the 
outputs from the perceptrons in the hidden 
layer feed into the perceptrons in the output 
layer. If an input for a perceptron is not 
needed, the weight will be set to zero.

Finer tuning
The big issue with this neural network is in 
training it. The most successful algorithm 
devised is known as the back-propagation 
training algorithm, but it requires some 
changes. The irst change is that the 

perceptron should output not 
just a 0 or a 1, but a loating-point 
value between 0 and 1. This will 
in turn require the perceptron to 
use a different activation function, 
one that’s a curve instead of being 
a step function. 

The functions used here are 
known as sigmoid functions. 
These are S-shaped functions 
with asymptotes at 0 and at 1. 
Figure 4 shows the standard one 
that’s used: f(x) = 1/(1+e-x), but 
others include the hyperbolic 
tangent (tanh) or the error 
function (erf). If a perceptron 
calculates a very large sum of its 
weighted inputs, it’ll output a 
value close to 1; if the sum is very 
large and negative, it’ll output a 

value close to 0; if it’s close to 0, the 
perceptron will output a value around 0.5.

Once these changes have been made, the 
network is ‘differentiable’; that is, it’s possible 
to calculate gradients. The gradients we want 
to calculate are to help us change the weights 
due to a training error: a steep gradient for an 
input signal means a larger change in its weight, 
a more gradual gradient means a smaller 
change. The gradient also gives a direction 
(upwards or downwards), so we know whether 
to add or subtract the correction term.

And all this means that, despite the much 
greater complexity of a feedforward neural 
network, training it still only requires a few 
cycles. Obviously you have to pre-calculate 
a catalogue of training sets (so, for example, 
if you were creating a neural network to 
recognise the digits using OCR, you’d use as 
many different variants of the digits using all 
the fonts you could ind), and those training 
sets would be fed into the network as often 
as needed until the weights converged.

Of course, this time around, you would 
have the extra knob to twiddle: the number 
of hidden perceptrons. Here there are no real 
guidelines apart from the more of them there 
are, the longer it will take to train the network, 
and you may not gain any more accuracy. 
Generally, though, you would aim for having 
at least as many hidden perceptrons as you 
have perceptrons in the output layer. n
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Another type of neural network that works on 

entirely different principles is the Kohonen map. 

For example, instead of showing the network data 

chairs and tables and telling it which is which, we 

just show it everything and ask it to sort it out 

itself (unsupervised learning). The network 

clusters the data according to size, whether the 

furniture has arms or a back or not, and so on. If 

all goes as planned, the data will naturally cluster 

into ‘chair-like’ and ‘table-like’. This is the basis of 

the self-organising Kohonen map. n

The main method for training a neural network 

is back-propagation. For certain networks, a 

different algorithm may prove more efficient: a 

genetic one. Here we apply the standard genetic 

optimisation techniques (using chromosome 

fitness selection and introducing changes due 

to crossovers and mutations) to the weights in 

the network. After a few generations, the weights 

will converge. This type of training is of greater 

benefit for learning environments where the 

network must learn on the fly. n

The Kohonen map 

Genetic algorithms

1 Figure 3: A feedforward network with three hidden perceptrons.

1 Figure 4: The curve produced by a standard sigmoid function.
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