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Bacon numbers can give a valuable insight into network search algorithms 

Calculate degrees
of separation

N
etworks are one of the most 
explored structures in computer 
science because they have 
applicability in many different 

scenarios. A number of algorithms have been 
devised for these structures; one of the most 
entertaining results is the so-called Bacon 
number: a measure of how close a particular 
actor is to Kevin Bacon in the world of fi lm.

This comes from the popular trivia game 
that has long been played in pubs around this 
great nation: the ‘Six Degrees of Kevin Bacon’. 
Here’s how it works: someone names an actor 
and then everyone has to try and work out the 
number of steps (‘degrees of separation’) 
between that actor and Kevin Bacon. The 
result is the Bacon number. Everyone who has 
worked directly in a movie with Kevin Bacon 
has a Bacon number of 1 (Kevin himself is 
assumed to have a Bacon number of 0). Those 
who have worked with one of those people will 
have a Bacon number of 2, and so on.

So, for example, suppose someone says 
‘John Thaw’. John Thaw never appeared in a 
movie with Kevin Bacon, but he did appear in 
Chaplin alongside Diane Lane. In turn, she 
appeared in My Dog Skip with, you guessed it, 
Kevin Bacon. Hence John Thaw has a Bacon 
number of 2. (There may be other links 

between John Thaw and Kevin Bacon of 
degree 2, but the prize goes to the fi rst person 
to suggest the shortest link, and hence the 
smallest Bacon number).

There's a great website called The Oracle 
of Bacon (www.oracleofbacon.org) that 
periodically downloads data about movies and 
their casts from the Internet Movie Database 
(www.imdb.com) to refresh its own database. 
From this data it builds a big map of actors and 
movies and can answer these kinds of degrees 
of separation questions. (Quick aside: what’s 
the shortest link between Billie Piper and 
Sean Connery? Apparently she had a bit part 
in Evita alongside Mark Ryan, who was in 
First Knight with Connery. A ‘Connery 
number’ of 2 for Billie Piper, then.)

It’s a small world
In mathematics there’s a similar concept 
known as the Erdös number, which is named 
after the prolifi c Hungarian mathematician 
Paul Erdös. He published a massive number 
of papers with many collaborators across many 
disciplines. The Erdös number for an academic 
is the number of steps between Erdös and 
themselves, via collaborators on papers. So 
Paul Erdös would have an Erdös number of 0, 
all of his collaborators on the various papers he 3
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column will be 1 (or ‘true’) if there’s an edge 
between the nodes represented by the row and 
column, and 0 (or ‘false’) otherwise. Sometimes 
the edges have a ‘weight’ associated with them, 
which is the value in each cell. (An example of 
this is a network of towns, where the weight of 
the edge for two towns would be the length of 
the most direct route between them.) 

A path is a set of edges using which we can 
travel from one given node to another. The 
length of the path is either the number of edges 
we have to travel to follow the path, or the sum 
of the weights of the edges. The shortest path 
is obviously the path with the smallest ‘length’.

Suppose we have a network, as shown in 
Figure 1. We want to fi nd the shortest path 
from A to B. We’ll fi rst consider the simple 
case where the path length is merely the 
count of the number of edges we follow.

We’ll need to store some information for 
each vertex we visit, so we should fi rst create 
an array that stores references to all the nodes 
in the network. We’ll get to the information we 
need to store in a moment, as we describe the 
algorithm. We’ll also need an implementation 
of a ‘queue’ to hold nodes we’re about to visit.

Our algorithm uses a technique called 
‘breadth-fi rst’ search. In it, we visit all the 
neighbours for a vertex before visiting the 
neighbours themselves, and so on. It’s rather 
as if the search ‘fans out’ from the original 
node. The alternative search technique is 
known as ‘depth-fi rst’ search, where we 

3

explore the nodes by following edges as far 
as we can go, and then backtrack to follow 
the edges that we missed. 

Back to the breadth-fi rst search. Set the 
fi rst node's ‘path length’ to 0. That’s the fi rst 
value we have to store with each node in our 
array (obviously, the fi rst node is at distance 
0 from itself). Add the starting node to the 
queue. Now, in a loop, continue removing 
nodes from the queue until we fi nd the target 
node. For each node we pick off the queue, 
mark it as ‘visited’ (to do this we’ll need a 
second value – a true/false indicator – and 
all nodes should be marked as unvisited at 
the start). Then add all the nodes immediately 
reachable from that node to the queue. 

However, there’s a quick test here: there’s 
no point in adding nodes that have already 
been visited, since if they are being visited 
again, the new path length must be longer 
than before. Also, when you add the neighbour 
nodes to the queue, set their path length to 
one more than the current node’s path length.
You stop when you pick off the target node 
from the queue. Its path length value will be 
the shortest distance from the source node 
to the target node.

Weights and measures
If you also want to output the path taken from 
A to B, you should record the ‘parent’ of each 
node as well as its path length when you queue 
the node (the parent is the node from which 
you’re following the edge). Once you reach B 
you can follow the path back to A by following 
the parent links. (If you want the path in the 
right order, merely push the nodes on to a 
stack as you go back to A, and then you can 
pop them off in the forward order.)

Figure 2 shows this algorithm in action 
by colouring the edges visited at each step and 
the contents of the queue at each stage. Step 5 
is the interesting one, since the edge marked in 
blue/grey is not followed (because the node at 
the end of it has already been visited).

For our application to Bacon numbers, the 
network may be huge (lots of nodes – sorry, 
actors – with each actor having many links to 
other actors), but this algorithm will suffi ce.

wrote would have an Erdös number of 1, and 
all their collaborators on other papers would 
have an Erdös number of 2, and so on.

All of these degrees-of-separation-type 
numbers are based upon the small world 
phenomenon. This is the observation that 
the social networks of large groups of people 
in modern society are very interconnected. 
Typically, they’re distinguished by short path 
lengths between any two nodes. 

The psychologist Stanley Milgram did some 
research on these social networks during the 
’60s and found that, on average (and using the 
methodology he described), any person in the 
US could trace a path to any other person in 
the US using between fi ve and six links. Hence 
the term ‘six degrees of separation’, although 
Milgram did not use this particular phrase (it 
was fi rst widely used as the name of a play and 
then a fi lm – the star of the movie was Will 
Smith, who has a Bacon number of 2).

The small world phenomenon is of course 
widely used nowadays by the social networking 
sites such as Facebook and MySpace, although 
it’s best known as part of LinkedIn, where you 
can view your network separation from 
another person directly.

Meet the neighbours
So how are these degrees of separation worked 
out? How does the Oracle of Bacon calculate 
the shortest number of links (the path) 
between actor A and actor B?

Graph theory holds the answer. Not graphs 
in the sense of those diagrams you had to draw 
at school to show y=x2, but computer science 
graphs, or networks. The algorithm used is a 
‘shortest path’ algorithm.

First, we need some terminology. I’ve 
already let slip a few pieces of jargon, so let’s 
be more rigorous. A network is a data structure 
consisting of nodes (sometimes known as 
vertices) and the edges that connect the nodes. 
You can most easily represent a network as a 
matrix, though this is ineffi cient in terms of 
memory. Each row and column represents 
nodes, and the intersection of a row and 

Fun trivial fact: I have a Bacon number of 2, but 

not through knowing or being an actor. In the 

late ’80s and very early ‘90s, I owned a fl at in 

Hammersmith. My next door neighbour on that 

fl oor was Martin Campbell, who at the time was 

an up-and-coming fi lm director, most famous for 

Edge of Darkness, and yet to make a big splash in 

Hollywood (that would be GoldenEye in 1995). 

I’d look after his fl at and car while he was away 

shooting and he’d thank me by giving me invites 

to his fi lm premières. In 1988, he made a fi lm 

called Criminal Law, starring Kevin Bacon and Gary

 Oldman, which gave me my magic number. ■

Julian’s Bacon number

1 Figure 1: A simple network. Here we need to 

fi nd the shortest path from A to B.

7 Figure 2: A step-by-step 

examination of a ‘breadth-

fi rst’ search algorithm.
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Spotlight on… Mazes
The depth-fi rst search technique briefl y 

mentioned in the text is also the best way of 

solving mazes, like the one at Hampton Court. 

In a maze, the junctions where three or more 

paths meet are the nodes, and the path 

between the junctions the edges. 

To solve such a maze (when you next 

happen to be visiting one of the royal palaces 

and want to show off  your inner geek), you 

enter the maze and then follow the left turn 

at each junction until you reach a dead end. 

Backtrack to the previous junction and then 

take the next leftmost path. Continue like this 

until you reach the centre of the maze. You 

will always make it, because the search is 

exhaustive (as well as exhausting). 

If you’re able to smuggle in a few stones 

of a slightly diff erent colour than the gravel in 

the maze, you'll be able to mark off  the paths 

already explored so you don't make a mistake. 

You can then easily pick most of them up and 

palm them as you make your return from the 

centre directly to the outside – no doubt to 

the amazement of onlookers. ■

For the other kind of network where each edge 
has a weight associated with it, the algorithm 
changes slightly, although it is still based on 
the idea of breadth-fi rst search. Here, we’re 
going to fi nd the path that has the smallest 
cost (that is, the smallest total weight). We 
could fi nd, for instance, that such a path 
has more edges than a strict ‘shortest’ path 
would have. This variant on the shortest path 
algorithm was fi rst devised by Edsger Dijkstra 
(the computer scientist who published the 
well-known paper called ‘Go To Statement 
Considered Harmful’ in 1968 that lambasted 
the then common and prolifi c use of the Goto 
statement in programs).

The big assumption here is that all the 
weights are positive numbers. The reason for 
this stipulation is that if an edge has a negative 
weight, and that edge forms part of a cycle of 
negative length, you could travel round the 
cycle ad infi nitum to produce shorter and 
shorter (more and more negative) paths.

Instead of an ordinary queue, Dijkstra’s 
Algorithm makes use of a priority queue. A 
priority queue is usually described as a queue 
to hold items from which you always pick off 
the item with the highest priority (and is so 
used in operating system job queues or printer 
queues), but can apply to any set of items from 
which you want to pick off the smallest or the 
largest. We’ll use the variant, where the next 
item you remove from the queue at each stage 
will be the smallest.

We start off as before: set the path length 
(or cost) to 0 for the fi rst node, and add it 
to the priority queue. Now we loop over the 

queue, picking off nodes until we fi nd the 
target node (and we will pick off the smallest 
node at each step). For each node we remove, 
however, we do some extra work. As before, 
we have to mark nodes as visited or unvisited 
(and obviously mark all nodes as unvisited at 
the start). When we remove a node from the 
queue, it is marked as visited.

For the current node, we look at each of the 
nodes reachable from it. If a neighbour node 
has been visited, we ignore it, much as we did 
before. For the other neighbouring nodes, we 
calculate the total cost to reach them from this 
one. Say the current node has cost 10, and the 
edge to another node has cost 4. The cost of 
the next node is therefore 14, through this 

particular node. Check whether this is less 
than the current cost of the next node (for this 
to work we shall have to set the cost of all the 
nodes – except the fi rst – at the start to some 
very large number, usually called infi nity). If 
it is, update the cost of the next node with this 
new smaller value and store the current node 
as its parent. Note that this will probably put 
the next node in a new position in the queue.

Completing the network
Once we remove the target node from the 
priority queue, we’ll have, as before, a path 
from it back to the original node, and we’ll 
also have the cost of that node as accumulated 
from the source node.

Figure 3 shows an application of Dijkstra’s 
algorithm to a simple network. Step 1 is the 
original network, and each of the edges is 
marked with its weight. Step 2, we start at A 
and fi nd the smallest edge (the one with weight 
1). That defi nes the next node to become our 
starting point for Step 3. Actually, for Step 4 
we have two possible nodes of weight 3: the 
one in the middle and the very bottom one. 
For brevity, I chose the middle one so that 
the algorithm completes with Step 4 at B. 
The shortest path is the one marked. ■

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express.
feedback@pcplus.co.uk

Dijkstra’s algorithm is used by modern mapping 

applications, such as Google Maps, to calculate 

the best route to go from one place to another. 

The mapping application uses a sophisticated 

algorithm for determining such a route, not only 

the actual distance you'd travel from junction to 

junction (an edge), but also some qualitative 

measurement of the speed of travelling along 

that edge. So motorways, for example, would 

have a lower cost than A roads, which would in 

turn be easier to travel than B roads. Traffi  c lights 

would have an extra cost, and so on. ■

Route planning

1 Figure 3: Dijkstra's algorithm, performed step by step.
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