
Make it

Network
algorithms

 287 November 2009 121

Bacon numbers can give a valuable insight into network search algorithms

Calculate degrees
of separation

N
etworks are one of the most
explored structures in computer
science because they have
applicability in many different

scenarios. A number of algorithms have been
devised for these structures; one of the most
entertaining results is the so-called Bacon
number: a measure of how close a particular
actor is to Kevin Bacon in the world of fi lm.

This comes from the popular trivia game
that has long been played in pubs around this
great nation: the ‘Six Degrees of Kevin Bacon’.
Here’s how it works: someone names an actor
and then everyone has to try and work out the
number of steps (‘degrees of separation’)
between that actor and Kevin Bacon. The
result is the Bacon number. Everyone who has
worked directly in a movie with Kevin Bacon
has a Bacon number of 1 (Kevin himself is
assumed to have a Bacon number of 0). Those
who have worked with one of those people will
have a Bacon number of 2, and so on.

So, for example, suppose someone says
‘John Thaw’. John Thaw never appeared in a
movie with Kevin Bacon, but he did appear in
Chaplin alongside Diane Lane. In turn, she
appeared in My Dog Skip with, you guessed it,
Kevin Bacon. Hence John Thaw has a Bacon
number of 2. (There may be other links

between John Thaw and Kevin Bacon of
degree 2, but the prize goes to the fi rst person
to suggest the shortest link, and hence the
smallest Bacon number).

There's a great website called The Oracle
of Bacon (www.oracleofbacon.org) that
periodically downloads data about movies and
their casts from the Internet Movie Database
(www.imdb.com) to refresh its own database.
From this data it builds a big map of actors and
movies and can answer these kinds of degrees
of separation questions. (Quick aside: what’s
the shortest link between Billie Piper and
Sean Connery? Apparently she had a bit part
in Evita alongside Mark Ryan, who was in
First Knight with Connery. A ‘Connery
number’ of 2 for Billie Piper, then.)

It’s a small world
In mathematics there’s a similar concept
known as the Erdös number, which is named
after the prolifi c Hungarian mathematician
Paul Erdös. He published a massive number
of papers with many collaborators across many
disciplines. The Erdös number for an academic
is the number of steps between Erdös and
themselves, via collaborators on papers. So
Paul Erdös would have an Erdös number of 0,
all of his collaborators on the various papers he 3

PCP287.theory 121 27/8/09 4:36:9 pm

122 287 November 2009

Make it Network algorithms

column will be 1 (or ‘true’) if there’s an edge
between the nodes represented by the row and
column, and 0 (or ‘false’) otherwise. Sometimes
the edges have a ‘weight’ associated with them,
which is the value in each cell. (An example of
this is a network of towns, where the weight of
the edge for two towns would be the length of
the most direct route between them.)

A path is a set of edges using which we can
travel from one given node to another. The
length of the path is either the number of edges
we have to travel to follow the path, or the sum
of the weights of the edges. The shortest path
is obviously the path with the smallest ‘length’.

Suppose we have a network, as shown in
Figure 1. We want to fi nd the shortest path
from A to B. We’ll fi rst consider the simple
case where the path length is merely the
count of the number of edges we follow.

We’ll need to store some information for
each vertex we visit, so we should fi rst create
an array that stores references to all the nodes
in the network. We’ll get to the information we
need to store in a moment, as we describe the
algorithm. We’ll also need an implementation
of a ‘queue’ to hold nodes we’re about to visit.

Our algorithm uses a technique called
‘breadth-fi rst’ search. In it, we visit all the
neighbours for a vertex before visiting the
neighbours themselves, and so on. It’s rather
as if the search ‘fans out’ from the original
node. The alternative search technique is
known as ‘depth-fi rst’ search, where we

3

explore the nodes by following edges as far
as we can go, and then backtrack to follow
the edges that we missed.

Back to the breadth-fi rst search. Set the
fi rst node's ‘path length’ to 0. That’s the fi rst
value we have to store with each node in our
array (obviously, the fi rst node is at distance
0 from itself). Add the starting node to the
queue. Now, in a loop, continue removing
nodes from the queue until we fi nd the target
node. For each node we pick off the queue,
mark it as ‘visited’ (to do this we’ll need a
second value – a true/false indicator – and
all nodes should be marked as unvisited at
the start). Then add all the nodes immediately
reachable from that node to the queue.

However, there’s a quick test here: there’s
no point in adding nodes that have already
been visited, since if they are being visited
again, the new path length must be longer
than before. Also, when you add the neighbour
nodes to the queue, set their path length to
one more than the current node’s path length.
You stop when you pick off the target node
from the queue. Its path length value will be
the shortest distance from the source node
to the target node.

Weights and measures
If you also want to output the path taken from
A to B, you should record the ‘parent’ of each
node as well as its path length when you queue
the node (the parent is the node from which
you’re following the edge). Once you reach B
you can follow the path back to A by following
the parent links. (If you want the path in the
right order, merely push the nodes on to a
stack as you go back to A, and then you can
pop them off in the forward order.)

Figure 2 shows this algorithm in action
by colouring the edges visited at each step and
the contents of the queue at each stage. Step 5
is the interesting one, since the edge marked in
blue/grey is not followed (because the node at
the end of it has already been visited).

For our application to Bacon numbers, the
network may be huge (lots of nodes – sorry,
actors – with each actor having many links to
other actors), but this algorithm will suffi ce.

wrote would have an Erdös number of 1, and
all their collaborators on other papers would
have an Erdös number of 2, and so on.

All of these degrees-of-separation-type
numbers are based upon the small world
phenomenon. This is the observation that
the social networks of large groups of people
in modern society are very interconnected.
Typically, they’re distinguished by short path
lengths between any two nodes.

The psychologist Stanley Milgram did some
research on these social networks during the
’60s and found that, on average (and using the
methodology he described), any person in the
US could trace a path to any other person in
the US using between fi ve and six links. Hence
the term ‘six degrees of separation’, although
Milgram did not use this particular phrase (it
was fi rst widely used as the name of a play and
then a fi lm – the star of the movie was Will
Smith, who has a Bacon number of 2).

The small world phenomenon is of course
widely used nowadays by the social networking
sites such as Facebook and MySpace, although
it’s best known as part of LinkedIn, where you
can view your network separation from
another person directly.

Meet the neighbours
So how are these degrees of separation worked
out? How does the Oracle of Bacon calculate
the shortest number of links (the path)
between actor A and actor B?

Graph theory holds the answer. Not graphs
in the sense of those diagrams you had to draw
at school to show y=x2, but computer science
graphs, or networks. The algorithm used is a
‘shortest path’ algorithm.

First, we need some terminology. I’ve
already let slip a few pieces of jargon, so let’s
be more rigorous. A network is a data structure
consisting of nodes (sometimes known as
vertices) and the edges that connect the nodes.
You can most easily represent a network as a
matrix, though this is ineffi cient in terms of
memory. Each row and column represents
nodes, and the intersection of a row and

Fun trivial fact: I have a Bacon number of 2, but

not through knowing or being an actor. In the

late ’80s and very early ‘90s, I owned a fl at in

Hammersmith. My next door neighbour on that

fl oor was Martin Campbell, who at the time was

an up-and-coming fi lm director, most famous for

Edge of Darkness, and yet to make a big splash in

Hollywood (that would be GoldenEye in 1995).

I’d look after his fl at and car while he was away

shooting and he’d thank me by giving me invites

to his fi lm premières. In 1988, he made a fi lm

called Criminal Law, starring Kevin Bacon and Gary

 Oldman, which gave me my magic number. ■

Julian’s Bacon number

1 Figure 1: A simple network. Here we need to

fi nd the shortest path from A to B.

7 Figure 2: A step-by-step

examination of a ‘breadth-

fi rst’ search algorithm.

PCP287.theory 122 27/8/09 4:36:11 pm

Network algorithms Make it

 287 November 2009 123

Spotlight on… Mazes
The depth-fi rst search technique briefl y

mentioned in the text is also the best way of

solving mazes, like the one at Hampton Court.

In a maze, the junctions where three or more

paths meet are the nodes, and the path

between the junctions the edges.

To solve such a maze (when you next

happen to be visiting one of the royal palaces

and want to show off your inner geek), you

enter the maze and then follow the left turn

at each junction until you reach a dead end.

Backtrack to the previous junction and then

take the next leftmost path. Continue like this

until you reach the centre of the maze. You

will always make it, because the search is

exhaustive (as well as exhausting).

If you’re able to smuggle in a few stones

of a slightly diff erent colour than the gravel in

the maze, you'll be able to mark off the paths

already explored so you don't make a mistake.

You can then easily pick most of them up and

palm them as you make your return from the

centre directly to the outside – no doubt to

the amazement of onlookers. ■

For the other kind of network where each edge
has a weight associated with it, the algorithm
changes slightly, although it is still based on
the idea of breadth-fi rst search. Here, we’re
going to fi nd the path that has the smallest
cost (that is, the smallest total weight). We
could fi nd, for instance, that such a path
has more edges than a strict ‘shortest’ path
would have. This variant on the shortest path
algorithm was fi rst devised by Edsger Dijkstra
(the computer scientist who published the
well-known paper called ‘Go To Statement
Considered Harmful’ in 1968 that lambasted
the then common and prolifi c use of the Goto
statement in programs).

The big assumption here is that all the
weights are positive numbers. The reason for
this stipulation is that if an edge has a negative
weight, and that edge forms part of a cycle of
negative length, you could travel round the
cycle ad infi nitum to produce shorter and
shorter (more and more negative) paths.

Instead of an ordinary queue, Dijkstra’s
Algorithm makes use of a priority queue. A
priority queue is usually described as a queue
to hold items from which you always pick off
the item with the highest priority (and is so
used in operating system job queues or printer
queues), but can apply to any set of items from
which you want to pick off the smallest or the
largest. We’ll use the variant, where the next
item you remove from the queue at each stage
will be the smallest.

We start off as before: set the path length
(or cost) to 0 for the fi rst node, and add it
to the priority queue. Now we loop over the

queue, picking off nodes until we fi nd the
target node (and we will pick off the smallest
node at each step). For each node we remove,
however, we do some extra work. As before,
we have to mark nodes as visited or unvisited
(and obviously mark all nodes as unvisited at
the start). When we remove a node from the
queue, it is marked as visited.

For the current node, we look at each of the
nodes reachable from it. If a neighbour node
has been visited, we ignore it, much as we did
before. For the other neighbouring nodes, we
calculate the total cost to reach them from this
one. Say the current node has cost 10, and the
edge to another node has cost 4. The cost of
the next node is therefore 14, through this

particular node. Check whether this is less
than the current cost of the next node (for this
to work we shall have to set the cost of all the
nodes – except the fi rst – at the start to some
very large number, usually called infi nity). If
it is, update the cost of the next node with this
new smaller value and store the current node
as its parent. Note that this will probably put
the next node in a new position in the queue.

Completing the network
Once we remove the target node from the
priority queue, we’ll have, as before, a path
from it back to the original node, and we’ll
also have the cost of that node as accumulated
from the source node.

Figure 3 shows an application of Dijkstra’s
algorithm to a simple network. Step 1 is the
original network, and each of the edges is
marked with its weight. Step 2, we start at A
and fi nd the smallest edge (the one with weight
1). That defi nes the next node to become our
starting point for Step 3. Actually, for Step 4
we have two possible nodes of weight 3: the
one in the middle and the very bottom one.
For brevity, I chose the middle one so that
the algorithm completes with Step 4 at B.
The shortest path is the one marked. ■

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

Dijkstra’s algorithm is used by modern mapping

applications, such as Google Maps, to calculate

the best route to go from one place to another.

The mapping application uses a sophisticated

algorithm for determining such a route, not only

the actual distance you'd travel from junction to

junction (an edge), but also some qualitative

measurement of the speed of travelling along

that edge. So motorways, for example, would

have a lower cost than A roads, which would in

turn be easier to travel than B roads. Traffi c lights

would have an extra cost, and so on. ■

Route planning

1 Figure 3: Dijkstra's algorithm, performed step by step.

PCP287.theory 123 27/8/09 4:36:13 pm

