
Make it

Theory 
workshop

 277 January 2009  121

T
he array is a common structure used 
in many programming languages. 
This structure has been around since 
the very early days of computing for 

the simple reason that – at the machine level 
– it’s both quick and easy to access individual 
elements of the structure. 

Consider this: all of the elements are held 
in contiguous memory, so there’s no hunting 
and pecking through vast empty spaces. If 
the start of the array is at memory address 
X, for example, then the fi rst element is at X. 
Assuming that the size of individual elements 
is Y bytes, the second element is at X+Y, the 
third at X+2Y, the fourth at X+3Y and so on. 

Since, in general, elements in an array are 
counted from 0 (so called zero-based arrays) 
to read element n, all the run-time library has 
to do is make a quick calculation to fi nd the 
address – X+nY – and go there. The process 
is as instantaneous as possible.

In this sense, the array works like a very 
simple dictionary: given a number (usually 
known as the index), you can immediately 
go to the right place in the structure and 
read the data associated with that number. 

But what we’d like more is a method that 
given a string (or to be most general, a key) 
would be able to go to the right place in the 
structure and read the data associated with 
the string or key. (The key is generally called 
a value, hence the common phrase ‘key-value 
pair’.) So, if we were going to emulate an 
everyday dictionary, for example, we’d like a 
structure that given the word ‘PCPlus’ would 

return the defi nition: an eminent magazine 
that covers computer hardware and software.

At fi rst blush, such a structure could just be 
an array of records with two fi elds – the word 
and the defi nition – and the structure would 
look up a given word by searching through 
the entire array, comparing keys one after the 
other. However, this would be an extremely 
slow process, with the time taken proportional 
to the number of elements in the array.

Another possibility would be to pre-sort 
the array of records in key order (just as a 
real-life dictionary does). Using this structure 
in conjunction with binary search, we could 
fi nd the record for a key in log(n) time (where n 
is the number of records in the array). This is a 
much better proposition: for an array of a 
million records, the binary search would only 
have to compare about 20 keys to fi nd a record.

However, what we’d like most of all is some 
way of mapping a key to an index in the array. 
That way, we’d be able to use the address 
calculation described above to get the record. 

This mapping is known as hashing the key. 
It involves chopping the key up in some manner 
and using what’s known as a hash function to 
obtain an index value. We can then use this 
value to directly index the key into an array. 
This will result in a type of dictionary, which 
in computing terms is known as a hash table.

Unfortunately, the hash function is not the 
only algorithm you need in order to create a 
dictionary. The problem is that hash functions 
are never perfect, and often we’ll fi nd that two 
different keys will map to the same index value. 

Speed up keyed access to data using hash functions to search an array 

Dictionaries 
and hash tables

3  WHAT’S COVERED
We’re all familiar with dictionaries. Given a word, 
we can look it up and read its defi nition. With a little 
judicious rewriting of ‘key’ for word and ‘record’ for 
defi nition, we get one of the most fundamental and 
useful data structures in computer science: the 
dictionary, or hash table.

In this issue…

  The problem is that hash functions 
are never perfect, and often two different 
keys will map to the same index value
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3 This means that the second algorithm we 
would need to consider is what we do when 
this happens. For obvious reasons, two or 
more keys mapping to the same index is 
called a collision. The second algorithm 
is therefore known as collision resolution.

So to recap, a dictionary is a pre-set array 
of n possible key-value pairs (initially empty) 
associated with a hash function (that given a 
key will return a value between 0 and n-1) and 
an algorithm to resolve possible collisions. The 
default operations on the dictionary are ‘Insert’ 
and ‘Find’. ‘Delete’ may be used later, although 
usage of most dictionaries tends to be centred 
more around inserting key-value pairs and 
then using the dictionary to fi nd values given 
a key than deleting those key-value pairs.

Hash functions
The fi rst thing to do is write a hash function, 
and preferably one that – given the breadth 
of keys we may encounter – will dole out 
values that won’t cause collisions. 

Let’s assume that our keys will be strings. 
The hash function will somehow convert the 

string to an integer value, and once we have 
that then we can use the modulus operator 
to force the value between 0 and n-1. 

So how would we convert a string into an 
integer? One way might be to use the length of 
the string key. This has the advantage of being 
simple and fast but the huge disadvantage of 
generating numerous collisions. In our real-
world dictionary example, words such as 
‘string’ and ‘simple’ would convert to the same 
value as ‘PCPlus’: 6. In fact, the vast majority 
of words in a 50,000-word dictionary would 
be less than 20 characters long, giving a pretty 
bad spread of values.

No, we must use the data in the string 
key in some fashion. One idea is to take the 
numerical values of each letter in the string 
(‘A’ would be 65, ‘a’ would be 97 and so on) and 
sum them. In this scheme ‘simple’ would hash 
to 650 while ’PCPlus’ would hash to 567. This 
isn’t too bad, but words that are palindromes 
(toot, dad) or anagrams of each other (read 
and dare) would suffer from collisions.

Nevertheless, using the numerical values 
of each character has merit; we just have to 
weight these values with their position in the 
string itself. A very simple hash function that 
produces a good distribution of values from 
string keys is this: for each character, multiply 
the current sum by 17, add in the numerical 
value of the character and then set the 
resulting sum to the modulus of it and the 
dictionary size. 17 is a bit of a magic number 
(it’s a prime number close to 16, the base 
of hex digits); combined with the fact that 
dictionaries tend to have a prime number 
of elements, it means that the fi nal modulus 
division won’t divide evenly.

Of course, all that multiplying and dividing 
could take a while. To combat this, various 
alterations have been made so that the 
algorithm uses logical operators instead. 

If the key is not a string, it will still be 
accessible as a sequence of bytes and this 
simple hashing algorithm will still work well.

Collision resolution
Given that we’re going to get collisions no 
matter what, we have to decide what to do. 
There are several algorithms available that 

1 Figure 1:  When keys hash to the same value, 

one will be placed in the next available empty slot.

1 Figure 2: Clusters grow as you insert more 

items, which results in more frequent collisions.

enable us to store the key-value pairs in an 
array by using the empty slots in the table 
to store items that collide with those that 
are already present. This class of algorithms 
are known collectively as open-addressing 
schemes, and the simplest example is one 
called linear probing.

Let’s explain by using a simple example. 
Suppose we are inserting surnames into a 
dictionary, and assume that we have a hash 
function of some pedigree or other. To start 
off, we insert the name Smith into the empty 
dictionary. We hash the key ‘Smith’ with our 
hash function and get the index value 42. 
We set element 42 of our pre-allocated 
array to Smith. The dictionary now looks 
like Figure 1(a) around this element.

That was pretty easy. Let’s now insert 
the name Jones. We shall proceed as before: 
hash the key ‘Jones’ and then insert Jones at 
the resulting index. Unfortunately, our hash 
function is of dubious provenance and hashes 
Jones to the value 42 again. We go to the 
dictionary and notice that we have a collision: 
slot 42 is already taken up with Smith. So what 
should we do now? 

With linear probing, we try the next slot to 
see if it’s empty. It is, so we set element 43 of 
our dictionary to Jones. If 43 were taken, we 
would have a look at the next slot and so on, 
going back to the beginning if we reach the 
end of the array. Eventually we’d fi nd an empty 
slot, or we’d get back to where we started and 
conclude that the array was full. 

Spotlight on… Alternative probes
In the main article, we discussed linear probing 

as a solution to resolve collisions. Are there 

any other solutions – and if there are, are they 

better? The main issue with linear probing is its 

tendency to produce clusters. If on inserting 

a new key the hash value hit a cluster, the 

key-value pair becomes part of that cluster. 

The fi rst alternative is quadratic probing. 

Instead of looking at the next element on a 

collision, and then the one after that, we can 

follow a quadratic progression: one after, four 

after, nine after and so on. This would avoid 

most of the issues with clustering, but it also 

has an insoluble problem: we can’t guarantee 

that all empty slots would be visited.

Better is a technique called double hashing, 

or rehashing. Here we have two hash functions. 

If there is a collision with the fi rst hash function, 

we use the second to create a step value other 

than 1. Since the diff erent keys are unlikely to 

produce the same hash with two functions, we 

neatly sidestep the linear clustering problem. 

Figure 3 shows the eff ects of applying a second 

hash function to the collisions from Figure 2. ■

Open addressing attempts to place all key-value 

pairs in the array. Another way of resolving 

collisions is to create a list of key-value pairs for all 

of the elements in the array that hash to the same 

value. If another key comes along that hashes to 

the same value as one or more other keys, just 

add it to the end of the list (or at the front, or in 

sorted order) at that index. This type of closed 

addressing is also known as chaining. If the list 

is a linked list, you can obtain such optimisations 

as sorting the list by the key-value pairs that are 

most frequently entered or searched for. This 

would mean that more popular keys are found at 

the front of the list and require less search time. ■

Closed addressing
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The act of checking a slot in the dictionary 
is called a probe, and we’re probing for empty 
slots one after the other, hence the name of the 
algorithm: linear probing.

The dictionary now looks like Figure 1(b) 
around the area of interest. Having inserted 
two items in our hypothetical dictionary, let’s 
see if we can fi nd them again. 

Let’s try Smith fi rst. We hash Smith to 
give an index of 42. We look at element 42 
and fi nd the Smith item right there. (Note 
that this requires a comparison of the names.) 
Now Jones. We hash Jones to give an index of 
42. We look at element 42. It’s the Smith item 
(a comparison), which isn’t the one we want. 
What we then do is the same thing that we 
did when we were inserting: we visit the next 
element in the dictionary to see if it is ours. 
And as it happens, it is. 

How about searching for an item that’s not 
in the table? Let’s search for ‘Brown’. We hash 
with our hash function and get the index value 
43. We visit element 43 and see that it’s the 

item for Jones. We advance one step to element 
44 and notice that it’s empty. We conclude that 
Brown is not in the dictionary.

Problems with open addressing
In general, if there are few occupied slots in 
the array, we’d expect most searches – whether 
successful or unsuccessful – to take just one or 
two probes. Once the array gets fairly full, the 
number of empty slots would be very few, and 
so we’d start to expect unsuccessful searches 
to take many probes – even as many as n-1 
probes if there was only one empty slot. In fact, 
if we’re using an open-addressing scheme like 
linear probing, it makes sense to ensure that 
the array doesn’t get overloaded. Our probing 
sequences would take a long time otherwise. 

There are a couple of points about linear 
probing that are worth mentioning. The fi rst 
thing is somewhat obvious: if there are n 
elements in an array, you can only insert n 
items (this is true for any open-addressing 
scheme). However, this theory is a little 
simplistic. To fi nd out whether a key is present 
in the array or not, we need at least one empty 
slot so that the search will stop once the entire 

array has been searched. This means that the 
array can never be completely full.

The second point is the problem of 
clustering. If you use linear probing, you’ll 
fi nd that items tend to form clumps or clusters 
of occupied slots. Adding another item causes 
the clusters to grow in size. This is because as 
more items are added, it gets more and more 
likely that the inserted item will collide with 
an item that’s in a cluster. And as collisions 
get more likely, the clusters will grow in size.

We can illustrate this with a simple fi gure. 
Figure 2 shows clusters growing in a small 
array, using random numbers for the hashes 
and linear probing to allocate slots. The 
orange squares are direct insertions and the 
red squares involve one or more collisions. 
At the end, we have two growing clusters.

Clusters affect both the average number 
of probes required to fi nd an existing item 
(known as a hit) and also the average number 
of probes required to show that an item does 
not exist in the dictionary (known as a miss). 

In fact, in his seminal work The Art of 
Computer Programming, Knuth derived 
some fairly simple expressions based on the 
load factor of a dictionary (the load factor 
is the proportion of occupied slots in the 
dictionary’s array). 

For a dictionary that is about half full, a 
hit requires about 1.5 probes, whereas a miss 
requires 2.5 probes on average. If the table is 
two-thirds full, a hit requires two probes and a 
miss requires fi ve probes. If the table is 90 per 
cent full, a hit requires on average 5.5 probes, 
but a miss requires an amazing 55.5 probes. 

As you can see, using linear probing as 
your dictionary’s collision-resolution scheme 
requires you to keep the table at most two-
thirds full. This should reduce the number 
of problems caused by clustering and hence 
increase your dictionary’s effi ciency. ■

Julian M Bucknall has worked for companies 
ranging from TurboPower to Microsoft and is 
now CTO for Developer Express.
feedback@pcplus.co.uk

Why use a dictionary?
 The reason that dictionaries are so popular is 

because they are the ideal implementation 

for a build-and-lookup scenario. As we saw 

above, if the dictionary is nowhere near full, 

a hit takes one or two probes. This operation 

takes hardly any time at all to complete. 

An example of a program that uses a 

dictionary all the time is a compiler. This 

program has to maintain information about 

the various identifi ers it comes across as it’s 

reading the code. It builds up a dictionary with 

the identifi ers as keys and information such as 

type, usage and so on as the values. When the 

compiler comes across another reference to 

the type, it can look it up in its dictionary to 

fi nd out about it. 

Up until relatively recently, programming 

languages required the use of a library in order 

to gain the benefi ts of using a dictionary. For 

example, the dictionaries of both C# and Java 

are found in the frameworks that accompany 

them, not in the language itself. 

Most of the recent dynamic languages 

– such as Perl, Python and Ruby – have 

dictionaries built into the language in the 

sense that there is special syntax for declaring 

and using a dictionary. 

However, even though C# has no syntactic 

support for dictionaries, C#’s compiler is clever 

enough to be able to use them in the compiled 

code for certain code structures, such as the 

switch statement. ■

1 Figure 3: Use another hash function in conjunction with linear probing to avoid clustering problems.

1 An array performs a similar function to a real 

dictionary, looking up a key to read its data. 

  With linear probing, items tend to form 
clusters of occupied slots – and adding more 
items causes the clusters to grow in size
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