
Make it

Theory
workshop

 277 January 2009 121

T
he array is a common structure used
in many programming languages.
This structure has been around since
the very early days of computing for

the simple reason that – at the machine level
– it’s both quick and easy to access individual
elements of the structure.

Consider this: all of the elements are held
in contiguous memory, so there’s no hunting
and pecking through vast empty spaces. If
the start of the array is at memory address
X, for example, then the fi rst element is at X.
Assuming that the size of individual elements
is Y bytes, the second element is at X+Y, the
third at X+2Y, the fourth at X+3Y and so on.

Since, in general, elements in an array are
counted from 0 (so called zero-based arrays)
to read element n, all the run-time library has
to do is make a quick calculation to fi nd the
address – X+nY – and go there. The process
is as instantaneous as possible.

In this sense, the array works like a very
simple dictionary: given a number (usually
known as the index), you can immediately
go to the right place in the structure and
read the data associated with that number.

But what we’d like more is a method that
given a string (or to be most general, a key)
would be able to go to the right place in the
structure and read the data associated with
the string or key. (The key is generally called
a value, hence the common phrase ‘key-value
pair’.) So, if we were going to emulate an
everyday dictionary, for example, we’d like a
structure that given the word ‘PCPlus’ would

return the defi nition: an eminent magazine
that covers computer hardware and software.

At fi rst blush, such a structure could just be
an array of records with two fi elds – the word
and the defi nition – and the structure would
look up a given word by searching through
the entire array, comparing keys one after the
other. However, this would be an extremely
slow process, with the time taken proportional
to the number of elements in the array.

Another possibility would be to pre-sort
the array of records in key order (just as a
real-life dictionary does). Using this structure
in conjunction with binary search, we could
fi nd the record for a key in log(n) time (where n
is the number of records in the array). This is a
much better proposition: for an array of a
million records, the binary search would only
have to compare about 20 keys to fi nd a record.

However, what we’d like most of all is some
way of mapping a key to an index in the array.
That way, we’d be able to use the address
calculation described above to get the record.

This mapping is known as hashing the key.
It involves chopping the key up in some manner
and using what’s known as a hash function to
obtain an index value. We can then use this
value to directly index the key into an array.
This will result in a type of dictionary, which
in computing terms is known as a hash table.

Unfortunately, the hash function is not the
only algorithm you need in order to create a
dictionary. The problem is that hash functions
are never perfect, and often we’ll fi nd that two
different keys will map to the same index value.

Speed up keyed access to data using hash functions to search an array

Dictionaries
and hash tables

3 WHAT’S COVERED
We’re all familiar with dictionaries. Given a word,
we can look it up and read its defi nition. With a little
judicious rewriting of ‘key’ for word and ‘record’ for
defi nition, we get one of the most fundamental and
useful data structures in computer science: the
dictionary, or hash table.

In this issue…

 The problem is that hash functions
are never perfect, and often two different
keys will map to the same index value

3

PCP277.theory 121 21/11/08 4:47:29 pm

Make it Theory workshop

122 277 January 2009

3 This means that the second algorithm we
would need to consider is what we do when
this happens. For obvious reasons, two or
more keys mapping to the same index is
called a collision. The second algorithm
is therefore known as collision resolution.

So to recap, a dictionary is a pre-set array
of n possible key-value pairs (initially empty)
associated with a hash function (that given a
key will return a value between 0 and n-1) and
an algorithm to resolve possible collisions. The
default operations on the dictionary are ‘Insert’
and ‘Find’. ‘Delete’ may be used later, although
usage of most dictionaries tends to be centred
more around inserting key-value pairs and
then using the dictionary to fi nd values given
a key than deleting those key-value pairs.

Hash functions
The fi rst thing to do is write a hash function,
and preferably one that – given the breadth
of keys we may encounter – will dole out
values that won’t cause collisions.

Let’s assume that our keys will be strings.
The hash function will somehow convert the

string to an integer value, and once we have
that then we can use the modulus operator
to force the value between 0 and n-1.

So how would we convert a string into an
integer? One way might be to use the length of
the string key. This has the advantage of being
simple and fast but the huge disadvantage of
generating numerous collisions. In our real-
world dictionary example, words such as
‘string’ and ‘simple’ would convert to the same
value as ‘PCPlus’: 6. In fact, the vast majority
of words in a 50,000-word dictionary would
be less than 20 characters long, giving a pretty
bad spread of values.

No, we must use the data in the string
key in some fashion. One idea is to take the
numerical values of each letter in the string
(‘A’ would be 65, ‘a’ would be 97 and so on) and
sum them. In this scheme ‘simple’ would hash
to 650 while ’PCPlus’ would hash to 567. This
isn’t too bad, but words that are palindromes
(toot, dad) or anagrams of each other (read
and dare) would suffer from collisions.

Nevertheless, using the numerical values
of each character has merit; we just have to
weight these values with their position in the
string itself. A very simple hash function that
produces a good distribution of values from
string keys is this: for each character, multiply
the current sum by 17, add in the numerical
value of the character and then set the
resulting sum to the modulus of it and the
dictionary size. 17 is a bit of a magic number
(it’s a prime number close to 16, the base
of hex digits); combined with the fact that
dictionaries tend to have a prime number
of elements, it means that the fi nal modulus
division won’t divide evenly.

Of course, all that multiplying and dividing
could take a while. To combat this, various
alterations have been made so that the
algorithm uses logical operators instead.

If the key is not a string, it will still be
accessible as a sequence of bytes and this
simple hashing algorithm will still work well.

Collision resolution
Given that we’re going to get collisions no
matter what, we have to decide what to do.
There are several algorithms available that

1 Figure 1: When keys hash to the same value,

one will be placed in the next available empty slot.

1 Figure 2: Clusters grow as you insert more

items, which results in more frequent collisions.

enable us to store the key-value pairs in an
array by using the empty slots in the table
to store items that collide with those that
are already present. This class of algorithms
are known collectively as open-addressing
schemes, and the simplest example is one
called linear probing.

Let’s explain by using a simple example.
Suppose we are inserting surnames into a
dictionary, and assume that we have a hash
function of some pedigree or other. To start
off, we insert the name Smith into the empty
dictionary. We hash the key ‘Smith’ with our
hash function and get the index value 42.
We set element 42 of our pre-allocated
array to Smith. The dictionary now looks
like Figure 1(a) around this element.

That was pretty easy. Let’s now insert
the name Jones. We shall proceed as before:
hash the key ‘Jones’ and then insert Jones at
the resulting index. Unfortunately, our hash
function is of dubious provenance and hashes
Jones to the value 42 again. We go to the
dictionary and notice that we have a collision:
slot 42 is already taken up with Smith. So what
should we do now?

With linear probing, we try the next slot to
see if it’s empty. It is, so we set element 43 of
our dictionary to Jones. If 43 were taken, we
would have a look at the next slot and so on,
going back to the beginning if we reach the
end of the array. Eventually we’d fi nd an empty
slot, or we’d get back to where we started and
conclude that the array was full.

Spotlight on… Alternative probes
In the main article, we discussed linear probing

as a solution to resolve collisions. Are there

any other solutions – and if there are, are they

better? The main issue with linear probing is its

tendency to produce clusters. If on inserting

a new key the hash value hit a cluster, the

key-value pair becomes part of that cluster.

The fi rst alternative is quadratic probing.

Instead of looking at the next element on a

collision, and then the one after that, we can

follow a quadratic progression: one after, four

after, nine after and so on. This would avoid

most of the issues with clustering, but it also

has an insoluble problem: we can’t guarantee

that all empty slots would be visited.

Better is a technique called double hashing,

or rehashing. Here we have two hash functions.

If there is a collision with the fi rst hash function,

we use the second to create a step value other

than 1. Since the diff erent keys are unlikely to

produce the same hash with two functions, we

neatly sidestep the linear clustering problem.

Figure 3 shows the eff ects of applying a second

hash function to the collisions from Figure 2. ■

Open addressing attempts to place all key-value

pairs in the array. Another way of resolving

collisions is to create a list of key-value pairs for all

of the elements in the array that hash to the same

value. If another key comes along that hashes to

the same value as one or more other keys, just

add it to the end of the list (or at the front, or in

sorted order) at that index. This type of closed

addressing is also known as chaining. If the list

is a linked list, you can obtain such optimisations

as sorting the list by the key-value pairs that are

most frequently entered or searched for. This

would mean that more popular keys are found at

the front of the list and require less search time. ■

Closed addressing

PCP277.theory 122 21/11/08 4:47:30 pm

Theory workshop Make it

 277 January 2009 123

The act of checking a slot in the dictionary
is called a probe, and we’re probing for empty
slots one after the other, hence the name of the
algorithm: linear probing.

The dictionary now looks like Figure 1(b)
around the area of interest. Having inserted
two items in our hypothetical dictionary, let’s
see if we can fi nd them again.

Let’s try Smith fi rst. We hash Smith to
give an index of 42. We look at element 42
and fi nd the Smith item right there. (Note
that this requires a comparison of the names.)
Now Jones. We hash Jones to give an index of
42. We look at element 42. It’s the Smith item
(a comparison), which isn’t the one we want.
What we then do is the same thing that we
did when we were inserting: we visit the next
element in the dictionary to see if it is ours.
And as it happens, it is.

How about searching for an item that’s not
in the table? Let’s search for ‘Brown’. We hash
with our hash function and get the index value
43. We visit element 43 and see that it’s the

item for Jones. We advance one step to element
44 and notice that it’s empty. We conclude that
Brown is not in the dictionary.

Problems with open addressing
In general, if there are few occupied slots in
the array, we’d expect most searches – whether
successful or unsuccessful – to take just one or
two probes. Once the array gets fairly full, the
number of empty slots would be very few, and
so we’d start to expect unsuccessful searches
to take many probes – even as many as n-1
probes if there was only one empty slot. In fact,
if we’re using an open-addressing scheme like
linear probing, it makes sense to ensure that
the array doesn’t get overloaded. Our probing
sequences would take a long time otherwise.

There are a couple of points about linear
probing that are worth mentioning. The fi rst
thing is somewhat obvious: if there are n
elements in an array, you can only insert n
items (this is true for any open-addressing
scheme). However, this theory is a little
simplistic. To fi nd out whether a key is present
in the array or not, we need at least one empty
slot so that the search will stop once the entire

array has been searched. This means that the
array can never be completely full.

The second point is the problem of
clustering. If you use linear probing, you’ll
fi nd that items tend to form clumps or clusters
of occupied slots. Adding another item causes
the clusters to grow in size. This is because as
more items are added, it gets more and more
likely that the inserted item will collide with
an item that’s in a cluster. And as collisions
get more likely, the clusters will grow in size.

We can illustrate this with a simple fi gure.
Figure 2 shows clusters growing in a small
array, using random numbers for the hashes
and linear probing to allocate slots. The
orange squares are direct insertions and the
red squares involve one or more collisions.
At the end, we have two growing clusters.

Clusters affect both the average number
of probes required to fi nd an existing item
(known as a hit) and also the average number
of probes required to show that an item does
not exist in the dictionary (known as a miss).

In fact, in his seminal work The Art of
Computer Programming, Knuth derived
some fairly simple expressions based on the
load factor of a dictionary (the load factor
is the proportion of occupied slots in the
dictionary’s array).

For a dictionary that is about half full, a
hit requires about 1.5 probes, whereas a miss
requires 2.5 probes on average. If the table is
two-thirds full, a hit requires two probes and a
miss requires fi ve probes. If the table is 90 per
cent full, a hit requires on average 5.5 probes,
but a miss requires an amazing 55.5 probes.

As you can see, using linear probing as
your dictionary’s collision-resolution scheme
requires you to keep the table at most two-
thirds full. This should reduce the number
of problems caused by clustering and hence
increase your dictionary’s effi ciency. ■

Julian M Bucknall has worked for companies
ranging from TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

Why use a dictionary?
 The reason that dictionaries are so popular is

because they are the ideal implementation

for a build-and-lookup scenario. As we saw

above, if the dictionary is nowhere near full,

a hit takes one or two probes. This operation

takes hardly any time at all to complete.

An example of a program that uses a

dictionary all the time is a compiler. This

program has to maintain information about

the various identifi ers it comes across as it’s

reading the code. It builds up a dictionary with

the identifi ers as keys and information such as

type, usage and so on as the values. When the

compiler comes across another reference to

the type, it can look it up in its dictionary to

fi nd out about it.

Up until relatively recently, programming

languages required the use of a library in order

to gain the benefi ts of using a dictionary. For

example, the dictionaries of both C# and Java

are found in the frameworks that accompany

them, not in the language itself.

Most of the recent dynamic languages

– such as Perl, Python and Ruby – have

dictionaries built into the language in the

sense that there is special syntax for declaring

and using a dictionary.

However, even though C# has no syntactic

support for dictionaries, C#’s compiler is clever

enough to be able to use them in the compiled

code for certain code structures, such as the

switch statement. ■

1 Figure 3: Use another hash function in conjunction with linear probing to avoid clustering problems.

1 An array performs a similar function to a real

dictionary, looking up a key to read its data.

 With linear probing, items tend to form
clusters of occupied slots – and adding more
items causes the clusters to grow in size

12 + 18

3 + 17

4

PCP277.theory 123 21/11/08 4:47:31 pm

