
Make it Xxxxxxxxxxx

132 272 September 2008

3 WHAT’S COVERED
Every now and then, you need some
random fi ller text to display in your
screen or website prototype. You
can use the famous ‘Lorem Ipsum’
text, a body of Latin much favoured
by typesetters, or you can generate
your own. Of course, you don’t
want to have it too readable, just
familiar-looking. One way of
generating some nonsense text
is to use Markov chains.

In this issue…

Generating
gobbledygook
How to make random text almost readable

 T
he other day I was a little
bored, so I actually
scanned through the text
of some of the spam email

I’d received. A lot of them were
the standard rubbish. Some of
them had ‘appropriated’ a chunk
of text from an online document.
And fi nally a small selection had
some text made up of real English
words, but the sentences were
nonsense that almost made sense
(this is known in the trade as
‘word salad’) until you stopped
to take note of the words
themselves. The main reason
spammers do this is to try and
beat Bayesian fi lters by including
words that the anti-spam
companies are unlikely to have
fl agged as likely spam content.

The fi rst thing people do when
they want to generate random text
is to programmatically implement
a monkey randomly bashing away
at a typewriter. The process is
pretty simple: in a loop, generate
a random number from one to 27,
output a letter from A to Z for one
through 26, and a space character
for 27. However, the results just
aren’t impressive. Figure 1 shows
the result from such an algorithm.

Some of you might be thinking
that a big problem with this
simple algorithm is that it takes

no account of the relative
importance of each letter. In
other words, since the letter E
appears in English much more
often than the letter Z, the text
that’s generated should follow the
same statistical distribution as
normal English prose and feature
far more Es than Zs. So where
can we fi nd the formula for this
statistical distribution?

We could look it up in some
book or on the Internet, but the
best thing to do to discover the
relative distributions of the letters
in English is to take a book and
analyse it. I chose The War of the
Worlds by H G Wells, mostly for
fun but also because I could
easily get an electronic version
from the Project Gutenberg

library online (www.gutenberg.
org). The body of text being
analysed is known as the ‘corpus’.

Probability problems
The analysis proceeds as follows:
ignore all punctuation and count
the number of times each letter
and the space character appears.
After that we will know how many
letters plus spaces we encountered
(the sum of these counts) and
from that we can calculate the
probability of each letter. Now
that we have the probabilities of
each character, we can modify the
original text generator to pick
letters randomly according to
their relative distribution.

This is an algorithm that not
many people know. Given a set of
probabilities for certain events,
how do you calculate a series of
random events so that over a great
number the observed probability
of each event is the same as the
required probability?

We’ll assume that we have
an array of probabilities for each
event and that the sum of those
probabilities is 1.0. Calculate a
random number between 0.0 and
1.0. If this value is less than the
fi rst probability, select the fi rst
event. If not, subtract the fi rst
probability from the random value

lywrpelhzgqxbpgrkcanrenbkabysncuba
aqxyczdduiuhwn rgxolfzwczbpjyzxkkdij
xbvixz wlr xhcrrdbhsmycxwtjeeeccfrbtqn
sljtrhyjzzdlckl uvwovqnjinxyaqjosicofvkss
qzjajviceoih fmslanqpahdlqnqajnmrxuff
xunqnhdukcsweyf...

1 Figure 1: Completely random text.

Make it

Theory
workshop

hwedinod dor feng ulit thevedomirtipo
arde dan t a quthe bat sed wif ungant in
manthoty ulo sthonbrdr wernnckle ti
edentomof boroy indincele d mat
wimyendarartad mmatirepre the inor h t
condes sure ow...

1 Figure 2: Text generated based on the previous character.

PCP272.theory 132PCP272.theory 132 10/7/08 14:23:3510/7/08 14:23:35

 272 September 2008 133

Theory workshop Make it

(the result will be greater than
or equal to zero) and repeat the
check with the new value and the
second probability. Eventually,
you will select a particular event.
Overall, over a large number of
selections, you’ll fi nd that the
observed distribution of events
mirrors the required distribution.

Unfortunately, though, using
the distribution probabilities
alone still doesn’t produce
anything recognisable.

The Markov method
Time to rethink our strategy a
little bit. Although the latest
program generates text according
to the statistical distributions of
the letters, English is just not like
that. For example, if the previous
letter were a Q, it’s highly likely
that the next letter is going to be
a U. If the previous letter were a T,
the next letter could be a vowel or
an H or an R, and so on, each with
a different probability. Our
analysis should take into account
the previous letter when
generating the next random letter.

Let’s try it. Go back to The War
of the Worlds and analyse the text
so that we make a note of which
letters follow which letters and
then generate some random text.
The simplest structure to use here
is a matrix with each row being
the preceding character, each
column being the succeeding
character, and the intersection
to probability of getting the
succeeding character from the
preceding one. This matrix will
inevitably have a lot of zeros –
it’s known as a ‘sparse matrix’.

Unfortunately, the text this
new algorithm produces is still
unrecognisable as English – if
arguably better than some of
the submissions to land on
publishers’ slush piles. See Figure
2 for an example, unless you’ve
already read it, in which case

please don’t write in to ask
what it was supposed to mean.
The only hidden message is
that human writers still have
some life in them yet...

I’m sure you’d recognise that,
if generating a character based
on the single character that
occurred before is good, perhaps
it would be better to use two
preceding characters as a basis
to deciding on the next. Or
maybe three, or perhaps four.

If you’ve any knowledge of
advanced mathematics, you
might have recognised this
idea as being a ‘Markov chain’
– and indeed, that’s exactly
what we are using here.

A Markov chain is a random
process that moves between
states in some defi ned set of
states. Working out which state
to move to is only dependent
on the current state, and not on
any previous state you may have
already visited. In our latest
example, calculating the next
character is only dependent on
the current character, and not on
any other character we may have
generated before. This type of
Markov chain is known as ‘order-
1’. If we were to consider the
previous two characters (or states)
instead, we’re using an order-2
Markov chain – and so on for
the higher orders.

These chains are named
after Andrey Markov, a Russian
mathematician working in the
late 19th and early 20th centuries,
who specialised in probabalistic
theories and calculus until his
death in 1917.

The big issue we have here is
that the statistical results matrix
becomes extremely sparse due to
the fact that the vast majority of
cells have a value of zero. A better
data structure to use might be a
hash table, where each possible
two-letter pair we see in the

original text is a key to a table
of probabilities for the next
character in the hash table.

Refi ning the results
The results of order-2 Markov
text generation still aren’t that
impressive, although we’re
starting to see some kind of
quasi-English creeping in. It’s
broken, and still nonsensical,
but can pass for actual language...
at least at a quick glance.

Once we have the basic
algorithm set up (reading and
analysing the original text,
building the hash table of keys
and probability tables, and
then using it to generate text),
extending it to higher order
Markov chains is fairly simple.
An order-10 Markov chain (that
is, calculating the next character
based on the previous 10
characters) produces some pretty
good nonsense English prose
(see Figure 3 for the order-10
generated start to the War of the
Worlds), but the hash table now
requires a huge amount of
memory to store the results of the
analysis. Is there a better way to
generate random text that doesn’t
require so much memory?

Up to now, we’ve been
analysing the text on a character
by character basis, and as we’ve
seen, we have to ratchet quite high
up the Markov order in order to

produce recognisable English
words. We can’t really go any
higher without hitting some
severe memory constraints (I
tried to run order-12 and I ran
out of memory for the hash table
when growing it), so we should
look for another approach.

Instead of using individual
characters as tokens, perhaps we
should use words. We could split
the text up on word boundaries
(the easiest defi nition of that is
the white space between the
words) and then analyse the
results as we have been doing,
in a standard Markov manner.

My experiments showed that
a word-based order-2 Markov
chain was the most effi cient,
both in terms of speed and
memory – and it generated text
that was pretty readable but
complete nonsense (Figure 4
shows the result). An order-1
Markov chain produced quite
unreadable nonsensical English,
whereas order-3 seemed to
produce huge chunks of the
original text with random
switches between the chunks,
which didn’t make it any more
readable or understandable. ■

Julian M Bucknall has worked
for companies ranging from
TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

BOOK ONE THE EVE OF THE WAR No
one would have left an abiding sense of
smell, but it had a pair of very large dark
eyes of a Martian from the Martians
making their blue shirts, dark trousers,
and singers.

1 Figure 3: Text generated based on the previous 10 characters.

The War of the adjacent houses. I had left
them nearly four weeks ago. A
monstrous tripod, higher than the
provision and wine shops. A couple of
sturdy roughs who had gone northward.
I spent that night and a special edition.
Even within the shadow: greyish billowy
movements, one above another, and
then of the Spotted Dog had already
come to hate the curate’s leg, and he
found one of us that are made for the last
seven hours I still believed that the Heat-
Ray went to and fro, and...

1 Figure 4: Text generated based on the previous two words.

PCP272.theory 133PCP272.theory 133 10/7/08 14:23:4610/7/08 14:23:46

