
146 269 June 2008

3 WHAT’S COVERED
 Stay on top of your algorithms by
charting them out. We explain the
basics of nodes and trees, and the
benefi ts of keeping them in order.

In this issue…

Drawing binary trees
Sometimes the easiest way to visualise an algorithm or a data structure is to draw it

 S
ometimes the easiest way
to visualise an algorithm
or a data structure is to
draw it. Instead of using a

vector-based drawing program,
you can achieve more consistent
results by writing a specifi c
program to draw the diagrams.
This article shows a simple
algorithm for drawing binary
trees, a two-dimensional data
structure which we view in a top-
down manner, but which is easier
to draw bottom-up.

Recently on my personal blog,
I’ve been writing about binary
trees. In order to illustrate the
points I was making, I wanted to
be able to create images of such
trees very easily. Although
drawing data structures such as
trees or graphs can get very
complicated very quickly, there is
an algorithm for drawing a binary
tree that is fast and produces a
pretty good rendition of the tree

on the screen. This means that
choosing to use trees as examples
need not be a painful decision.

Binary trees
First, let’s defi ne what we mean by
a binary tree. I’ll use a recursive
defi nition, that is, a defi nition
which invokes itself, because it’s
succinct and will help when
drawing the tree. A binary tree
can either be empty, or consist of a
node, called the root, that has
links to two other binary trees.

The two sub-trees hanging off
the root are normally called the
‘left child’ and the ‘right child’.

When we draw a tree, we
usually draw the root at the top
(see Figure 1). Its children are
drawn to its left and to its right (it
is between them) and underneath
the root, so that we see a visual
representation of the terms
‘left child’ and ‘right child’. The
children of the root are drawn in

the same manner underneath
their parents. Determining
exactly where to place each node
on the surface we’re drawing on
is diffi cult: we certainly can’t
draw the root fi rst, since its
horizontal position depends on
how many nodes there are in the
root’s left child.

Let’s imagine that we have a
grid overlaying the surface on
which we’re going to draw the
tree. The grid is fairly coarse, and
we are only going to draw a node
on an intersection of the
horizontal grid line and a vertical
one. Furthermore we shall assume
that the horizontal grid lines are
counted from the top of the
surface, and the vertical grid lines
are counted from the left. In other
words, the grid acts as a
coordinate space whose origin
(0,0) is at the top left of the
drawing surface. (This is upside
down from the usual way we
learnt drawing graphs at school,
where the origin was at the
bottom-left corner.)

This means that the root will
be drawn on the horizontal grid
line 0 – its y-coordinate is 0 – on
an unspecifi ed vertical grid line.
Its x-coordinate still needs to
be calculated.

Node coordinates
When talking about a tree, we use
the term ‘level’ to describe where a
node appears vertically. The level
of a node in a binary tree is given

Make it

Theory
workshop

The problem with the algorithm
described here is that the end-
result tends to be too spread out
horizontally. To produce a more
aesthetic image, we can constrain
the nodes to their level, but then
apply an iterative algorithm that
fi rst mimics the links as springs (so
that children are drawn to their
parents) and second mimics
electrical repulsion between
nodes on the same level. After
a few cycles, the electrical
repulsion will exactly counter
the string-like attraction, and the
nodes will be at their ‘sweet’ spot,
resulting in a better image. ■

Nugget

1 Figure 2: The same binary tree as shown above with only the links visible.

1 Figure 1: A complete binary tree.

PCP269.theory 146PCP269.theory 146 10/4/08 12:01:1310/4/08 12:01:13

 269 June 2008 147

Theory workshop Make it

The method shown in the main
article draws lines at an angle
directly from child to parent node.
Another common way of drawing
lines is known as orthogonal
drawing. Here the links are drawn
as line segments along the grid
lines and the nodes are usually
rendered as rectangles. In general,
the lines aren’t kept separate, but
instead are allowed to merge so
that the eff ect is of one line
segment leaving the parent and
splitting into two, with one part
going to the left child and the
other to the right. The best
example for this kind of tree
drawing is an organisation chart
showing the management chain in
a company. ■

Nugget

by the number of links you have to
travel down from the root in order
to reach it. The root is therefore at
level 0 (no links need to be
followed), and its children nodes
are at level 1. Their children are at
level 2, and so on. The level of a
node is therefore the same as the
y-coordinate where it will be
drawn in our grid system.

But what about a node’s x-
coordinate? To make it easier on
ourselves, and to avoid having to
detect whether one node bumps
into or overlays another, we shall
institute a rule that there will only
be one node per vertical grid line.
This may mean, as we shall see,
that the tree is a little too spread
out horizontally, but it’ll be a
whole lot easier to deal with.
What this means in practice is
that the root’s x-coordinate will be
equal to the total number of nodes
in its left subtree.

To suit the recursive nature of
binary trees, the algorithm itself is
recursive. Given the root of a
binary tree and its level, we draw
its left subtree starting one level
down, draw its right subtree one
level down, and then draw the
root at its level.

It may appear that we can
perform the algorithm by fi rst
drawing the left subtree, then the
root, and lastly the right subtree,
because after drawing the left
subtree we have enough
information to draw the root (in
essence, we’ll know the number of
nodes in the left subtree). This
supposition would indeed be the
case if the nodes did not need
linking together.

Linking the nodes
To draw a link, or in other words a
line between two nodes, it’s going
to be orders of magnitude easier
to draw the line between the grid
intersections before we draw the
nodes on top of the grid

intersections. The fi lled circles
representing the nodes will
overwrite the portion of the lines
by the intersection and give a very
clean join. If we didn’t do it this
way, we’d have to do some funky
trigonometry in order to work out
where the link’s line intersects the
node’s circle to cut it off exactly,
and to be honest, it’s not worth it.

Figure 2 shows the same
binary tree as Figure 1, except that
I’ve suppressed the drawing of the
nodes as circles. You can see the
links are drawn from grid
intersection to grid intersection.

This means that a parent node
can only be drawn once the links
to both its children have been
drawn, so that it will overlap the
lines from its children.

The algorithm makes use of a
counter to count the number of

nodes that have been painted, up
to the point we need to draw
another node. Initially, it’s set to
0. When, through our traversal of
the tree, we identify a node that
can be painted, we’ll know its
level, that is, its y-coordinate,
from how far we’ve travelled down
the tree (every time we recursively
call the algorithm, we increment
the level number being passed).

The x-coordinate is slightly
more complicated. We draw the
left subtree and now know how
many nodes are in it from the
node counter. The root will have
this value as its x-coordinate, but
we can’t draw it until we have
drawn the right subtree. So we
make a note of the node counter’s
value as if we had drawn the root,
increment the node counter, and
then draw the right subtree. Once
that’s done, we can draw the root,
using the saved x-coordinate.

We’ve already identifi ed
several routines that we need to
write. The fi rst is the one we call
to draw the full tree. All it does is
to initialise the node counter to 0
and call the routine to draw the
children (it should pass level
number 1 to the draw children
routine), which returns the x-
coordinate for the root, before
drawing the root. We have to have
a special routine for this, since the
root of the whole tree does not
have a link upwards; it has no
parent node.

The routine to draw the
children calls another routine to
draw the left subtree (passing its
level), saves the value of the node
counter for the parent node’s x-
coordinate, increments it, and
then calls a routine to draw the
right subtree. This last routine
returns the saved node counter
value for the caller (who will then
use it to draw the parent node).

Recursion routines
Now we get into the actual
recursion. The routine that draws
the left subtree fi rst calls the
routine that draws the children.
This will return the x-coordinate
of the root of this subtree. We then
draw the link from this node’s grid
intersection (we know both its
coordinates) to its parent. We
know the parent’s level (it’s one
less than the level of this node),
and we also know the parent’s x-
coordinate from the current value
of the node counter. We then draw
the node itself.

Finally, the routine that draws
the right subtree saves the current
value of the node counter (it’s the
x-coordinate of the subtree’s
parent) and calls the draw
children routine, which returns
the x-coordinate of the root of this
subtree. We can then draw the
link from this node’s grid
intersection to the parent’s, and
draw the node itself.

That’s it for the algorithm
itself. If you think about what’s
going on in the recursion, you’ll
see that the tree is drawn and
fi lled in from the lowest levels
up to the root, since that is the
only way we can calculate the
position of all the nodes. The rest
of the code that you’d need to
write to implement the algorithms
is code to actually draw the lines
and the fi lled circles on the
graphics surface, and that
depends on the graphics library
API you are using.

Figure 3 shows a less balanced
binary tree where the number in
each node is the order in which
the nodes were drawn.

The fi gures shown in this
article were created by this
algorithm and ‘drawn’ by emitting
PostScript commands to an
Encapsulated PostScript
(EPS) fi le. The typesetter for this
article could grow or shrink the
images without the fuzziness or
jaggedness you’d see from doing
the same to a JPG or PNG image.
Every little helps. ■

Julian M Bucknall has worked
for companies ranging from
TurboPower to Microsoft and is
now CTO for Developer Express.
feedback@pcplus.co.uk

1
0 2

3
5

6

7
4

1

2

3

4

5

1 This snapshot sequence
shows the drawing process.

1 Figure 3: A binary tree showing the order that the nodes were drawn.

PCP269.theory 147PCP269.theory 147 10/4/08 12:01:1510/4/08 12:01:15

