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3  WHAT’S COVERED
 Stay on top of your algorithms by 
charting them out. We explain the 
basics of nodes and trees, and the 
benefi ts of keeping them in order.

In this issue…

Drawing binary trees
Sometimes the easiest way to visualise an algorithm or a data structure is to draw it

 S
ometimes the easiest way 
to visualise an algorithm 
or a data structure is to 
draw it. Instead of using a 

vector-based drawing program, 
you can achieve more consistent 
results by writing a specifi c 
program to draw the diagrams. 
This article shows a simple 
algorithm for drawing binary 
trees, a two-dimensional data 
structure which we view in a top-
down manner, but which is easier 
to draw bottom-up.

Recently on my personal blog, 
I’ve been writing about binary 
trees. In order to illustrate the 
points I was making, I wanted to 
be able to create images of such 
trees very easily. Although 
drawing data structures such as 
trees or graphs can get very 
complicated very quickly, there is 
an algorithm for drawing a binary 
tree that is fast and produces a 
pretty good rendition of the tree 

on the screen. This means that 
choosing to use trees as examples 
need not be a painful decision.

Binary trees
First, let’s defi ne what we mean by 
a binary tree. I’ll use a recursive 
defi nition, that is, a defi nition 
which invokes itself, because it’s 
succinct and will help when 
drawing the tree. A binary tree 
can either be empty, or consist of a 
node, called the root, that has 
links to two other binary trees. 

The two sub-trees hanging off 
the root are normally called the 
‘left child’ and the ‘right child’.

When we draw a tree, we 
usually draw the root at the top 
(see Figure 1). Its children are 
drawn to its left and to its right (it 
is between them) and underneath 
the root, so that we see a visual 
representation of the terms 
‘left child’ and ‘right child’. The 
children of the root are drawn in 

the same manner underneath 
their parents. Determining 
exactly where to place each node 
on the surface we’re drawing on 
is diffi cult: we certainly can’t 
draw the root fi rst, since its 
horizontal position depends on 
how many nodes there are in the 
root’s left child. 

Let’s imagine that we have a 
grid overlaying the surface on 
which we’re going to draw the 
tree. The grid is fairly coarse, and 
we are only going to draw a node 
on an intersection of the 
horizontal grid line and a vertical 
one. Furthermore we shall assume 
that the horizontal grid lines are 
counted from the top of the 
surface, and the vertical grid lines 
are counted from the left. In other 
words, the grid acts as a 
coordinate space whose origin 
(0,0) is at the top left of the 
drawing surface. (This is upside 
down from the usual way we 
learnt drawing graphs at school, 
where the origin was at the 
bottom-left corner.)

This means that the root will 
be drawn on the horizontal grid 
line 0 – its y-coordinate is 0 – on 
an unspecifi ed vertical grid line. 
Its x-coordinate still needs to 
be calculated.

Node coordinates
When talking about a tree, we use 
the term ‘level’ to describe where a 
node appears vertically. The level 
of a node in a binary tree is given 

Make it

Theory 
workshop

The problem with the algorithm 
described here is that the end-
result tends to be too spread out 
horizontally. To produce a more 
aesthetic image, we can constrain 
the nodes to their level, but then 
apply an iterative algorithm that 
fi rst mimics the links as springs (so 
that children are drawn to their 
parents) and second mimics 
electrical repulsion between 
nodes on the same level. After 
a few cycles, the electrical 
repulsion will exactly counter 
the string-like attraction, and the 
nodes will be at their ‘sweet’ spot, 
resulting in a better image. ■

Nugget

1 Figure 2: The same binary tree as shown above with only the links visible.

1 Figure 1: A complete binary tree.
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Theory workshop Make it

The method shown in the main 
article draws lines at an angle 
directly from child to parent node. 
Another common way of drawing 
lines is known as orthogonal 
drawing. Here the links are drawn 
as line segments along the grid 
lines and the nodes are usually 
rendered as rectangles. In general, 
the lines aren’t kept separate, but 
instead are allowed to merge so 
that the eff ect is of one line 
segment leaving the parent and 
splitting into two, with one part 
going to the left child and the 
other to the right. The best 
example for this kind of tree 
drawing is an organisation chart 
showing the management chain in 
a company.  ■

Nugget

by the number of links you have to 
travel down from the root in order 
to reach it. The root is therefore at 
level 0 (no links need to be 
followed), and its children nodes 
are at level 1. Their children are at 
level 2, and so on. The level of a 
node is therefore the same as the 
y-coordinate where it will be 
drawn in our grid system.

But what about a node’s x-
coordinate? To make it easier on 
ourselves, and to avoid having to 
detect whether one node bumps 
into or overlays another, we shall 
institute a rule that there will only 
be one node per vertical grid line. 
This may mean, as we shall see, 
that the tree is a little too spread 
out horizontally, but it’ll be a 
whole lot easier to deal with. 
What this means in practice is 
that the root’s x-coordinate will be 
equal to the total number of nodes 
in its left subtree. 

To suit the recursive nature of 
binary trees, the algorithm itself is 
recursive. Given the root of a 
binary tree and its level, we draw 
its left subtree starting one level 
down, draw its right subtree one 
level down, and then draw the 
root at its level. 

It may appear that we can 
perform the algorithm by fi rst 
drawing the left subtree, then the 
root, and lastly the right subtree, 
because after drawing the left 
subtree we have enough 
information to draw the root (in 
essence, we’ll know the number of 
nodes in the left subtree). This 
supposition would indeed be the 
case if the nodes did not need 
linking together.

Linking the nodes
To draw a link, or in other words a 
line between two nodes, it’s going 
to be orders of magnitude easier 
to draw the line between the grid 
intersections before we draw the 
nodes on top of the grid 

intersections. The fi lled circles 
representing the nodes will 
overwrite the portion of the lines 
by the intersection and give a very 
clean join. If we didn’t do it this 
way, we’d have to do some funky 
trigonometry in order to work out 
where the link’s line intersects the 
node’s circle to cut it off exactly, 
and to be honest, it’s not worth it. 

Figure 2 shows the same 
binary tree as Figure 1, except that 
I’ve suppressed the drawing of the 
nodes as circles. You can see the 
links are drawn from grid 
intersection to grid intersection.

This means that a parent node 
can only be drawn once the links 
to both its children have been 
drawn, so that it will overlap the 
lines from its children. 

The algorithm makes use of a 
counter to count the number of 

nodes that have been painted, up 
to the point we need to draw 
another node. Initially, it’s set to 
0. When, through our traversal of 
the tree, we identify a node that 
can be painted, we’ll know its 
level, that is, its y-coordinate, 
from how far we’ve travelled down 
the tree (every time we recursively 
call the algorithm, we increment 
the level number being passed). 

The x-coordinate is slightly 
more complicated.  We draw the 
left subtree and now know how 
many nodes are in it from the 
node counter. The root will have 
this value as its x-coordinate, but 
we can’t draw it until we have 
drawn the right subtree. So we 
make a note of the node counter’s 
value as if we had drawn the root, 
increment the node counter, and 
then draw the right subtree. Once 
that’s done, we can draw the root, 
using the saved x-coordinate.

We’ve already identifi ed 
several routines that we need to 
write. The fi rst is the one we call 
to draw the full tree. All it does is 
to initialise the node counter to 0 
and call the routine to draw the 
children (it should pass level 
number 1 to the draw children 
routine), which returns the x-
coordinate for the root, before 
drawing the root. We have to have 
a special routine for this, since the 
root of the whole tree does not 
have a link upwards; it has no 
parent node.

The routine to draw the 
children calls another routine to 
draw the left subtree (passing its 
level), saves the value of the node 
counter for the parent node’s x-
coordinate, increments it, and 
then calls a routine to draw the 
right subtree. This last routine 
returns the saved node counter 
value for the caller (who will then 
use it to draw the parent node).

Recursion routines
Now we get into the actual 
recursion. The routine that draws 
the left subtree fi rst calls the 
routine that draws the children. 
This will return the x-coordinate 
of the root of this subtree. We then 
draw the link from this node’s grid 
intersection (we know both its 
coordinates) to its parent. We 
know the parent’s level (it’s one 
less than the level of this node), 
and we also know the parent’s x-
coordinate from the current value 
of the node counter. We then draw 
the node itself.

Finally, the routine that draws 
the right subtree saves the current 
value of the node counter (it’s the 
x-coordinate of the subtree’s 
parent) and calls the draw 
children routine, which returns 
the x-coordinate of the root of this 
subtree. We can then draw the 
link from this node’s grid 
intersection to the parent’s, and 
draw the node itself.

That’s it for the algorithm 
itself. If you think about what’s 
going on in the recursion, you’ll 
see that the tree is drawn and 
fi lled in from the lowest levels 
up to the root, since that is the 
only way we can calculate the 
position of all the nodes. The rest 
of the code that you’d need to 
write to implement the algorithms 
is code to actually draw the lines 
and the fi lled circles on the 
graphics surface, and that 
depends on the graphics library 
API you are using. 

Figure 3 shows a less balanced 
binary tree where the number in 
each node is the order in which 
the nodes were drawn. 

The fi gures shown in this 
article were created by this 
algorithm and ‘drawn’ by emitting 
PostScript commands to an 
Encapsulated PostScript 
(EPS) fi le. The typesetter for this 
article could grow or shrink the 
images without the fuzziness or 
jaggedness you’d see from doing 
the same to a JPG or PNG image. 
Every little helps. ■

Julian M Bucknall has worked 
for companies ranging from 
TurboPower to Microsoft and is 
now CTO for Developer Express.
feedback@pcplus.co.uk
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1 This snapshot sequence 
shows the drawing process.

1 Figure 3: A binary tree showing the order that the nodes were drawn.

PCP269.theory   147PCP269.theory   147 10/4/08   12:01:1510/4/08   12:01:15


