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Best data use
We learn about stacks and queues very early on, but sometimes some neat optimisations are missed

 E
very now and then I 
see a post in one of the 
programming newsgroups 
I frequent where someone 

talks about their implementation 
of a data structure and then asks 
for other people’s comments about 
their implementation.

A recent one I read described 
a standard implementation of 
a queue. Although the queue was 
going to work just fi ne, there 
were a couple of very simple 
improvements that could have 
been made to boost performance 
and make the code more elegant. 
These enhancements would also 
make it easier to convert into 
a lock-free form for multi-
threaded programming.

Let’s take a look at building 
a stack and a queue using a 
linked list. I shall assume that 
we’re using an object-oriented 
language, so you won’t see 
any pointers here.

A stack has two main 
operations, traditionally called 
push and pop. The usual image 
we use is a stack of plates in a 
cafeteria: push adds a new plate 
to the top of the stack and pop 
removes the top one. When we 
implement the push operation 
we’re going to be given an object 
of some description to add to the 
stack. We should allocate another 
object to hold it, a ‘link object’, 
which will also have a link to 
the next object in the stack. This 
link object is more generally 
known as a ‘node’. 

The fi rst push merely saves the 
node internally to the stack. The 
second and subsequent pushes 
sets the link of the new node to 
the current list and saves the new 
linked list headed by this new 
node. Figure 1 shows the steps in 
pushing an item onto the stack.

Assuming that the push 
method will be passed an item to 
store on the stack, the algorithm 
goes like this: allocate a new 
node, set its ‘item property’ to the 
item we’re given, set its ‘next 
property’ to the linked list already 
present in the stack (this could 
be null if there is no list yet), and 
then set the stack’s linked list 
to this new node.

The pop operation
Now we’ve seen the push 
operation, let’s take a look at the 
inverse operation, pop. There’s a 
big wrinkle here that we should 
design for: what happens when 
pop is called with no items on 
the stack? In essence, there are 
two possibilities, one pretty 

innocuous, but that could cause 
problems for the unobservant, 
and the other which is very vocal. 
The fi rst option is to return null 
or nothing. This is simple, but it 
does impose on the user of the 
stack to understand and cater for 
the case that pop could return 
null. The second option is to 
throw an exception. 

Personally, I prefer the fi rst 
case for a couple of reasons. First 
it matches the way I program 
with stacks (it’ll generally be a 
loop which I’ll exit if there was 
nothing popped), and second it’s 
less intrusive and more effi cient 
than throwing an exception. 

The algorithm for pop works 
like this (fi gure 2 shows the 
process): if there is nothing in 
the stack (the linked list will be 
null in this case), return null. 
Otherwise, save the node at the 
top of the linked list, set the 
linked list to the node’s ‘next 
property’, and return the item 
in the node. If you’re working 
in a non-garbage collected 
environment, there will be a 
couple of extra steps in order to 
de-allocate the node after you 
have fi nished with it, of course.

All in all, the stack is pretty 
easy to implement as a linked list, 
so let’s take a look at the queue.

Form a queue
In a queue, we have to maintain 
links to both the front and end of 
the linked list, the front, or head, 
because that’s where we’ll be 
removing nodes, and the end, or 

One of the issues we still face 
with both the stack and the queue 
is memory management. The node 
is a small object: just an item and a 
next link. For each enqueue or 
push we will be allocating a new 
node, for every dequeue or pop 
we’ll be implicitly marking a node 
as unused, or explicitly freeing it. 
Memory management for such 
small objects can be problematic: 
we could be spending quite a 
bit of time in the memory heap 
code. An optimisation that you 
could explore is to implement a 
free list of unused nodes as a 
specialised stack. ■ 
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1 Figure 1: Pushing a node onto a stack.

3  WHAT’S COVERED
One of the very fi rst data structures 
we learn in programming is how to 
use a singly linked list to implement 
a stack and a queue. Even though 
the initial code we write will be 
effi  cient, and can be guaranteed to 
be effi  cient by mathematical 
reasoning, our very familiarity with 
the concepts blinds us to some 
clever performance optimisations. 

In this issue…

1 Figure 2: Popping a node from the stack.
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tail, where we’ll be adding nodes. 
Again, there’s a traditional image 
we bear in mind: the supermarket 
queue. We join the queue for 
paying at the tail end of the 
queue, and the cashier processes 
the customers from the head.

So in our implementation we 
shall have to maintain two links: 
the fi rst is the linked list itself, 
just as in the case of the stack, 
the second is a link to the fi nal 
node in the linked list, the 
furthest from the head.

As there are two links to 
take care of, the algorithms for 
enqueue and dequeue (the queue 
equivalents of push and pop) are 
a little more complicated.

For enqueue (fi gure 3), the 
fi rst time an item is enqueued is 
going to be a little different than 
from other times. When the 
queue is empty, both the head (the 
linked list itself) and the tail will 
be null. We’ll just use the nullness 
of the tail as an indicator of 

whether the queue is empty or 
not. So, if the tail is null, we 
allocate a new node, set its ‘item 
property’ to the item we’re given, 
set its ‘next property’ to null, and 
then set both the head and tail 
properties to the new node.

Otherwise, when the tail is not 
null, we allocate a new node, set 
its ‘item property’ to the item we 
are given, set its ‘next property’ to 
null (just as before). Now comes 
the fun bit: we set the tail’s ‘next 
property’ to our new node, and 
then set the tail to our new node.

Dequeue, on the other hand, is 
replete with special cases (fi gure 
4). There are three: the queue is 
empty (not shown), the queue has 
exactly one node, and the queue 
has more than one node.

The easiest case is when the 
queue is empty: we merely return 
null for the item. No changes to 
the queue itself need to be done.

Let’s now look at the case 
where there is more than one 
node in the queue (we’ll see that 
the fi nal case is a special case of 
this scenario). In essence, the 
operations are exactly the same 
as for the stack’s pop method: 
save the node at the top of the 
linked list, set the linked list to 
the node’s ‘next property’, and 
return the item in the node. If 
there were more than one node 
in the linked list, we wouldn’t 
have to do anything else; the tail 
link would still be valid.

If, however, there was only one 
node in the list, removing the one 
and only node would make the 
tail link invalid since it points to 

outside world, so you can force it 
to have at least one node when you 
construct the queue instance.

So, in the queue’s constructor, 
you would allocate a node, set 
both its item and next properties 
to null, and then set the head and 
tail links to this dummy node. 
From this point the linked list 
will never be empty. 

Of course, we now have to 
redefi ne when the queue itself is 
empty (this dummy node doesn’t 
count for the user of the queue 
since it contains no items and will 
never be dequeued). I’m sure you 
can see that the queue is empty if 
the head and tail links are equal.

Now, with this dummy node 
present, when we enqueue we set 
the tail’s ‘next property’ to our 
new node, and then set the tail to 
our new node. When we dequeue, 
if the head equals the tail, we 
return null; otherwise we save the 
head’s ‘next node’ (remember the 
head itself is a dummy node), set 
the head’s ‘next property’ to this 
saved node’s ‘next link’.

And there you are, with the use 
of a dummy node, we’ve simplifi ed 
the queue’s operations quite 
considerably: in the case of 
enqueue by removing an if 
statement completely, and for 
dequeue by removing one of the 
two if statements. ■
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a node that was no longer in the 
list. So in this case we would have 
to set the tail link to null (the 
head link would automatically 
be set to null, just as in the pop 
case). And how do we know if the 
linked list only has one node? 
Easy: both the head and the tail 
links will be equal when we start 
the dequeue operation.

At this point, let’s step 
back a moment and look at the 
complexities of each method. 
Push has only one case: you do 
the same no matter how many 
nodes are in the linked list. Pop 
has two cases: the stack is either 
empty or it isn’t. Enqueue has 
two cases: the container is either 
empty or not empty. Dequeue has 
three cases: empty, one node, and 
more than one node. 

Making it simple
Naturally, the question poses 
itself: is there a way to reduce 
the complexity of the queue’s 
operations? To make it as 
simple as the stack?

Well, if we could guarantee 
that the queue always has at least 
one node in it, we certainly could. 
It would never be empty, which 
would remove a case for both 
enqueue and dequeue. However, 
we can’t always guarantee that 
the queue would have at least one 
node, of course: we don’t know, 
when implementing the queue, 
how it’s going to be used. But even 
if we can’t assure that guarantee 
for the queue, we can assure it for 
the linked list inside the queue. 
This linked list is hidden from the 

1 Figure 3: Dequeuing a node 
from the queue.

Spotlight on... Removing the head link
One improvement you can make 
to the standard queue algorithm 
that involves a fun little trick is to 
remove the head link altogether 
and just have one link to update 
as we enqueue and dequeue 
nodes from the queue.

This seems impossible: after all 
the head link is the linked list itself. 
The trick is to use a circular linked 
list instead of a linear list. When 
the queue is fi rst constructed, we 
allocate our dummy node. Instead 
of setting its ‘next property’ to 
null as we did before, we set it 
to itself to form a circular list. We 
call this dummy node the tail. To 
determine if the queue is empty, 

we check to see if the tail’s ‘next 
link’ is equal to the tail.

Now to enqueue a new node, 
we do pretty much exactly the 
same as we did before: set the 
‘next link’ of the new node to the 
‘next link’ of the tail node (in the 
standard queue algorithm, this 
was null), set the tail’s ‘next link’ 
to our new node, and then set 
the tail link to the new node.

To dequeue the node from the 
head we have to fi nd it fi rst. Since 
the linked list is circular, the head 
node is the node that is pointed to 
by the tail node’s ‘next link’. Now 
that we have the head node, we 
can proceed as before. ■ 

1 Figure 4: Enqueuing a new 
node into a queue.

Another strategy to explore to 
minimize the allocation of lots of 
little node objects is to make the 
node a structure (a record) instead 
of a class, and then allocate a large 
array of nodes (call this a block). 
Then push all these nodes onto a 
free list, and then use the free list 
for allocating nodes. 

This strategy is a little more 
complex than a simple free list 
since you’ll fi nd that you have to 
manage one or more blocks, again 
in some kind of linked list, but a 
benefi t of this algorithm is twofold. 

The fi rst is, depending on how 
you tweak things, the nodes you 
use will generally all be in the same 
memory block. The operating 
system will not have to swap 
memory pages in and out as you 
refer to nodes. The second benefi t 
is that you can refer to the nodes 
by index and not by reference, 
which may similarly improve 
performance slightly. ■

Nugget
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