
146 262 December 2007

Best data use
We learn about stacks and queues very early on, but sometimes some neat optimisations are missed

 E
very now and then I
see a post in one of the
programming newsgroups
I frequent where someone

talks about their implementation
of a data structure and then asks
for other people’s comments about
their implementation.

A recent one I read described
a standard implementation of
a queue. Although the queue was
going to work just fi ne, there
were a couple of very simple
improvements that could have
been made to boost performance
and make the code more elegant.
These enhancements would also
make it easier to convert into
a lock-free form for multi-
threaded programming.

Let’s take a look at building
a stack and a queue using a
linked list. I shall assume that
we’re using an object-oriented
language, so you won’t see
any pointers here.

A stack has two main
operations, traditionally called
push and pop. The usual image
we use is a stack of plates in a
cafeteria: push adds a new plate
to the top of the stack and pop
removes the top one. When we
implement the push operation
we’re going to be given an object
of some description to add to the
stack. We should allocate another
object to hold it, a ‘link object’,
which will also have a link to
the next object in the stack. This
link object is more generally
known as a ‘node’.

The fi rst push merely saves the
node internally to the stack. The
second and subsequent pushes
sets the link of the new node to
the current list and saves the new
linked list headed by this new
node. Figure 1 shows the steps in
pushing an item onto the stack.

Assuming that the push
method will be passed an item to
store on the stack, the algorithm
goes like this: allocate a new
node, set its ‘item property’ to the
item we’re given, set its ‘next
property’ to the linked list already
present in the stack (this could
be null if there is no list yet), and
then set the stack’s linked list
to this new node.

The pop operation
Now we’ve seen the push
operation, let’s take a look at the
inverse operation, pop. There’s a
big wrinkle here that we should
design for: what happens when
pop is called with no items on
the stack? In essence, there are
two possibilities, one pretty

innocuous, but that could cause
problems for the unobservant,
and the other which is very vocal.
The fi rst option is to return null
or nothing. This is simple, but it
does impose on the user of the
stack to understand and cater for
the case that pop could return
null. The second option is to
throw an exception.

Personally, I prefer the fi rst
case for a couple of reasons. First
it matches the way I program
with stacks (it’ll generally be a
loop which I’ll exit if there was
nothing popped), and second it’s
less intrusive and more effi cient
than throwing an exception.

The algorithm for pop works
like this (fi gure 2 shows the
process): if there is nothing in
the stack (the linked list will be
null in this case), return null.
Otherwise, save the node at the
top of the linked list, set the
linked list to the node’s ‘next
property’, and return the item
in the node. If you’re working
in a non-garbage collected
environment, there will be a
couple of extra steps in order to
de-allocate the node after you
have fi nished with it, of course.

All in all, the stack is pretty
easy to implement as a linked list,
so let’s take a look at the queue.

Form a queue
In a queue, we have to maintain
links to both the front and end of
the linked list, the front, or head,
because that’s where we’ll be
removing nodes, and the end, or

One of the issues we still face
with both the stack and the queue
is memory management. The node
is a small object: just an item and a
next link. For each enqueue or
push we will be allocating a new
node, for every dequeue or pop
we’ll be implicitly marking a node
as unused, or explicitly freeing it.
Memory management for such
small objects can be problematic:
we could be spending quite a
bit of time in the memory heap
code. An optimisation that you
could explore is to implement a
free list of unused nodes as a
specialised stack. ■

Nugget

Theory
workshop

Make it

1 Figure 1: Pushing a node onto a stack.

3 WHAT’S COVERED
One of the very fi rst data structures
we learn in programming is how to
use a singly linked list to implement
a stack and a queue. Even though
the initial code we write will be
effi cient, and can be guaranteed to
be effi cient by mathematical
reasoning, our very familiarity with
the concepts blinds us to some
clever performance optimisations.

In this issue…

1 Figure 2: Popping a node from the stack.

PCP262.theory 146PCP262.theory 146 1/10/07 10:21:561/10/07 10:21:56

 262 December 2007 147

Theory workshop Make it

tail, where we’ll be adding nodes.
Again, there’s a traditional image
we bear in mind: the supermarket
queue. We join the queue for
paying at the tail end of the
queue, and the cashier processes
the customers from the head.

So in our implementation we
shall have to maintain two links:
the fi rst is the linked list itself,
just as in the case of the stack,
the second is a link to the fi nal
node in the linked list, the
furthest from the head.

As there are two links to
take care of, the algorithms for
enqueue and dequeue (the queue
equivalents of push and pop) are
a little more complicated.

For enqueue (fi gure 3), the
fi rst time an item is enqueued is
going to be a little different than
from other times. When the
queue is empty, both the head (the
linked list itself) and the tail will
be null. We’ll just use the nullness
of the tail as an indicator of

whether the queue is empty or
not. So, if the tail is null, we
allocate a new node, set its ‘item
property’ to the item we’re given,
set its ‘next property’ to null, and
then set both the head and tail
properties to the new node.

Otherwise, when the tail is not
null, we allocate a new node, set
its ‘item property’ to the item we
are given, set its ‘next property’ to
null (just as before). Now comes
the fun bit: we set the tail’s ‘next
property’ to our new node, and
then set the tail to our new node.

Dequeue, on the other hand, is
replete with special cases (fi gure
4). There are three: the queue is
empty (not shown), the queue has
exactly one node, and the queue
has more than one node.

The easiest case is when the
queue is empty: we merely return
null for the item. No changes to
the queue itself need to be done.

Let’s now look at the case
where there is more than one
node in the queue (we’ll see that
the fi nal case is a special case of
this scenario). In essence, the
operations are exactly the same
as for the stack’s pop method:
save the node at the top of the
linked list, set the linked list to
the node’s ‘next property’, and
return the item in the node. If
there were more than one node
in the linked list, we wouldn’t
have to do anything else; the tail
link would still be valid.

If, however, there was only one
node in the list, removing the one
and only node would make the
tail link invalid since it points to

outside world, so you can force it
to have at least one node when you
construct the queue instance.

So, in the queue’s constructor,
you would allocate a node, set
both its item and next properties
to null, and then set the head and
tail links to this dummy node.
From this point the linked list
will never be empty.

Of course, we now have to
redefi ne when the queue itself is
empty (this dummy node doesn’t
count for the user of the queue
since it contains no items and will
never be dequeued). I’m sure you
can see that the queue is empty if
the head and tail links are equal.

Now, with this dummy node
present, when we enqueue we set
the tail’s ‘next property’ to our
new node, and then set the tail to
our new node. When we dequeue,
if the head equals the tail, we
return null; otherwise we save the
head’s ‘next node’ (remember the
head itself is a dummy node), set
the head’s ‘next property’ to this
saved node’s ‘next link’.

And there you are, with the use
of a dummy node, we’ve simplifi ed
the queue’s operations quite
considerably: in the case of
enqueue by removing an if
statement completely, and for
dequeue by removing one of the
two if statements. ■

Julian M Bucknall has worked
for many major companies and is
now CTO for Developer Express.
feedback@pcplus.co.uk

a node that was no longer in the
list. So in this case we would have
to set the tail link to null (the
head link would automatically
be set to null, just as in the pop
case). And how do we know if the
linked list only has one node?
Easy: both the head and the tail
links will be equal when we start
the dequeue operation.

At this point, let’s step
back a moment and look at the
complexities of each method.
Push has only one case: you do
the same no matter how many
nodes are in the linked list. Pop
has two cases: the stack is either
empty or it isn’t. Enqueue has
two cases: the container is either
empty or not empty. Dequeue has
three cases: empty, one node, and
more than one node.

Making it simple
Naturally, the question poses
itself: is there a way to reduce
the complexity of the queue’s
operations? To make it as
simple as the stack?

Well, if we could guarantee
that the queue always has at least
one node in it, we certainly could.
It would never be empty, which
would remove a case for both
enqueue and dequeue. However,
we can’t always guarantee that
the queue would have at least one
node, of course: we don’t know,
when implementing the queue,
how it’s going to be used. But even
if we can’t assure that guarantee
for the queue, we can assure it for
the linked list inside the queue.
This linked list is hidden from the

1 Figure 3: Dequeuing a node
from the queue.

Spotlight on... Removing the head link
One improvement you can make
to the standard queue algorithm
that involves a fun little trick is to
remove the head link altogether
and just have one link to update
as we enqueue and dequeue
nodes from the queue.

This seems impossible: after all
the head link is the linked list itself.
The trick is to use a circular linked
list instead of a linear list. When
the queue is fi rst constructed, we
allocate our dummy node. Instead
of setting its ‘next property’ to
null as we did before, we set it
to itself to form a circular list. We
call this dummy node the tail. To
determine if the queue is empty,

we check to see if the tail’s ‘next
link’ is equal to the tail.

Now to enqueue a new node,
we do pretty much exactly the
same as we did before: set the
‘next link’ of the new node to the
‘next link’ of the tail node (in the
standard queue algorithm, this
was null), set the tail’s ‘next link’
to our new node, and then set
the tail link to the new node.

To dequeue the node from the
head we have to fi nd it fi rst. Since
the linked list is circular, the head
node is the node that is pointed to
by the tail node’s ‘next link’. Now
that we have the head node, we
can proceed as before. ■

1 Figure 4: Enqueuing a new
node into a queue.

Another strategy to explore to
minimize the allocation of lots of
little node objects is to make the
node a structure (a record) instead
of a class, and then allocate a large
array of nodes (call this a block).
Then push all these nodes onto a
free list, and then use the free list
for allocating nodes.

This strategy is a little more
complex than a simple free list
since you’ll fi nd that you have to
manage one or more blocks, again
in some kind of linked list, but a
benefi t of this algorithm is twofold.

The fi rst is, depending on how
you tweak things, the nodes you
use will generally all be in the same
memory block. The operating
system will not have to swap
memory pages in and out as you
refer to nodes. The second benefi t
is that you can refer to the nodes
by index and not by reference,
which may similarly improve
performance slightly. ■

Nugget

PCP262.theory 147PCP262.theory 147 1/10/07 10:21:591/10/07 10:21:59

