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3 WHAT’S COVERED 
  Binary search is possibly the most 

well-known and simplest 
algorithm in the computer science 
lexicon. It can be said to be one of 
those algorithms you learn at your 
at an early age and yet it has 
been shown to be diffi  cult to get 
right: the edge cases can trip you 
up badly. 

  In this issue… C
onsider this problem: 
you are given a phone 
book and you have to 
fi nd the name associated 

with a particular phone number. 
If you were inclined to even start 
this task (and, believe me, I 
wouldn’t), the only way you could 
do it would be to start at the 
beginning of the book and read 
each phone number until you fi nd 
the one requested, at which point 
you’ll know the name of the 
person who has that phone 
number. This simple algorithm is 
called sequential search.

The opposite problem though, 
fi nding out the phone number for 
a given name, we can easily solve. 
In general, we’d fl ip quickly 
through the book until we fi nd the 
fi rst letter of the surname, and 
then hone into the name we want, 
using the surnames printed at the 
top of the pages (in essence, 
narrowing in on subsequent 
letters in the surname) until we 
reach the right page. At this point 
what we’d probably do is to look at 
the middle name in that page. If 
it’s not the one we want, we can 
immediately state which half of 
the page contains our requested 
name, and just concentrate on 
that half. We’d essentially do the 
same thing: look at the middle 
name in the half of the page, and 
then know which half of the half 
page we need to concentrate on. 
Eventually we’d zero in on the 
surname we want. I even fi nd that 
once I’ve roughly found out where 
the name is, I’ll sequentially 
search through that small part of 
the page for the one I want.

Binary search
That process, once formalized and 
implemented for a computer, is 
known as binary search.

Binary search is one of those 
algorithms that seems to have 
been around as long as Euclid’s 
algorithm for fi nding the Greatest 
Common Divisor of two numbers, 

smaller. If it’s equal, great, we can 
exit the algorithm and report the 
index of the array where we found 
the item. If the middle element is 
smaller, the item we’re looking for 
must be in the half of the array 
that’s greater than this middle 
element; otherwise it’s in the half 
of the array that’s smaller than the 
middle element. We now apply the 
same algorithm again to the half 
array, whichever half we 
determined the item to be in. 

In implementing this 
algorithm, rather than copying 
the initial array into smaller and 
smaller arrays, we make use of 
two indexes, traditionally called 
lower and upper, to determine the 
bounds of the sub-array we’re 
working on. We initially set lower 
to 0 and upper to the index of the 
last element in the array.

To be pedantic and not use exits 
from loops or from routines, we 
make use of a Boolean variable, 
still looking to determine when 
we should exit the loop (that is, 
when we determine the item is not 
present or the index of the element 
in the array if it is). We use an 
integer variable foundAtIndex for 

and my example of the phone 
book seems to prove it. In fact it 
was only formally stated in 1946 
by John Mauchly (1907-1980), but 
a complete implementation was 
produced in 1960 by D.H. Lehmer 
(1905-1991), the number theorist 
also famous for primality testing 
and generating random numbers.

Problems with bugs
In fact, for some reason, binary 
search is one of those algorithms 
whose implementation always 
seems to cause problems. The 
main bugs that surface seem to be 
off-by-one errors or even an 
infi nite loop. Let’s implement a 
bug-free version in C#.

First we must defi ne the 
algorithm itself. Suppose we have 
an array of elements that are in 
sorted order and an item that we 
are trying to fi nd in this array. If 
the array is empty, we can 
immediately return and report 
that the item can’t be found. 
Otherwise, we fi nd the middle 
element in the array. There are 
three possibilities: this middle 
element is equal to the item we’re 
looking for, it’s larger, or it’s 
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1 The steps taken in an example of a successful search for 42. Note how the 
upper and lower bounds zero in on it.

Binary search can help with the 
game of guessing a number less 
than one million using 20 
questions. You guess the halfway 
point of your current range. If it’s 
equal, great, you’re done. If it’s less 
(or greater) then you modify your 
range accordingly and continue 
the algorithm. 

In essence, by following this 
algorithm, you are guessing the 
digits of the binary representation 
of the number the other has 
selected from the most to the least 
signifi cant. Because one million is 
less than two to the twentieth 
power, you’ll only need at most 20 
questions to determine all the 
binary digits and therefore the 
actual number.

Nugget
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the index at which we fi nd our 
item; with the assumption that if 
we don’t fi nd it, it’ll be -1. It is this 
value we’ll be returning.
int BinarySearch(int[] array, int item) 
{
    int lower = 0;
    int upper = array.Length - 1;
    int middle;
    int foundAtIndex = -1; // this 
means “not found”
    bool stillLooking = true;
    while (stillLooking) {
        ... code that searches ...
    }
    return foundAtIndex;
}

We now enter the implementation 
of the algorithm proper. The fi rst 
thing to check is if the array is 
empty. When using our index 
variables, we have an empty array 
when lower is greater than upper. 
A common error is to assume that 
the array is empty when these 
variables are equal, but when they 
are, the array has one element.

So suppose lower is less than or 
equal to upper. We can calculate 
the middle index, middle, to be 
(lower + upper)/2. (The division 
operator is assumed here to be 
integer division, so that 6/2 is 3 
and 7/2 is also 3). 

We can now check to see 
whether the element at middle is 
less than, equal to, or greater than 
the item we’re trying to fi nd. If 
equal, we return the value of 
middle. If it’s less than the item 
we’re searching for, then we set 
lower to middle+1, and go around 
to try again. In adding one to the 

value of middle, we are 
deliberately excluding that 
element from the sub-array that 
we’re going to search next, and 
quite rightly too since this is the 
prime cause of inadvertent 
infi nite loops.

If the middle element is greater 
than the item we’re searching for, 
we set upper to middle-1, and go 
around and try again. And again, 
we are deliberately excluding the 
middle element from the 
subsequent sub-array.
if (lower > upper) {
stillLooking = false;
}
else {
middle = (lower + upper) / 2;
if (array[middle] == item) {

stillLooking = false;
foundAtIndex = middle;
}
else if (array[middle] < item) {
lower = middle + 1;
}
else {
upper = middle - 1;
}
}

Although this code will work, it is 
a little verbose, and there are ways 
in which it can be made tighter. 
The important point to note is 
that it works, and any changes you 
make should be rigorously tested 
against the original.

The fi gures show the operation 
of the binary search algorithm in 

action. Figure 1 shows a successful 
search for the item 42 in a sorted 
array. Notice how the bounds of 
the range quickly close in on the 
element we’re searching for. 
Figure 2, shows an unsuccessful 
search for the item 13 in the array. 
This time notice how the bounds 
cross over in the last step to 
indicate that the item is not 
present in the array.

Numerical analysis
Binary search is ubiquitous in 
programming. I show elsewhere 
in the callouts a couple of 
examples of its use. Another 
example from the fi eld of 
numerical analysis is when you 
are trying to fi nd the root of a 
mathematical function in x (that 
is, for which value of x does the 
function equal zero?). One way is 
to use the bisection method: fi nd a 
value of x for which the function is 
negative, and one for which it is 
positive. Hence the value for x for 
which it is zero is between them. 
Find the middle value of x. If the 
function evaluates to zero we’ve 
found the answer, otherwise we 
can reduce one of the bounds for x 
to this middle value. Repeat until 
we fi nd the answer.

Binary search is also used in 
several data structures, especially 
sorted binary trees and the B-
trees used by database engines to 
index data. In fact, any time you 
hear the phrase ‘divide-and-
conquer’ when talking about an 
algorithm, you’re probably looking 
at a use for binary search. ■
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Binary search turns up everywhere. 
Do you want to calculate the 
number of rightmost zero bits for 
an unsigned 8-bit integer? (So, for 
10111000 the answer is three). Use 
binary search. Set a counter to 
zero. Check if the four rightmost 
bits are zero by ANDing with 0x0F. 
If the result is zero increment the 
counter by four and shift the 
number right by four. Now check if 
the two rightmost bits are zero by 
ANDing with 0x03. If the result is 
zero, increment the counter by two 
and shift the number left by two. 
Finally check if the rightmost bit is 
zero by ANDing with 0x01, and if 
the result is zero, increment the 
counter by one. The counter is now 
equal to the number of rightmost 
zeros. This binary search can be 
extended to 32-bit integers
quite easily. ■

Nugget

Spotlight on… Bugs in standard binary
Although the code I’ve presented 
in the main article works, there is 
a subtle bug that appears with 
large numbers of elements. The 
bug is extremely subtle: the code 
shown has been accepted to be 
bug-free for a very long time and 
it was a complete surprise when 
Joshua Bloch, a Software 
Engineer at Google, published a 
blog post last year that revealed 
this subtle bug.

The problem lies with the 
statement that calculates the 

value of middle. It looks innocuous 
enough, and for the vast majority of 
values it’s perfectly correct. The 
problem occurs when the numbers 
get too large.

The largest value that can be 
held by a 32-bit integer is just over 
two billion. Let’s imagine that both 
upper and lower are about 1.5 
billion. When we add them together 
prior to dividing by two, we’ll 
overfl ow the range of an integer. To 
put it another way, we cannot hold 
the result in an integer variable. In 

fact, the overfl owed sum will be 
negative, causing all kinds of 
bugs in the algorithm.

The solution is to use the 
following statement instead:

middle = lower + (upper – lower) 
/ 2

This avoids the overfl ow. An error 
like this will often fail silently, 
throwing your maths when you 
least expect it. Always test your 
code,keeping both eyes peeled 
for anomalous results. ■

1 In this example, the bounds cross in, but finally cross over – an unsucessful 
binary search in action.
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