
 257 July 2007 33

3 WHAT’S COVERED
 Binary search is possibly the most

well-known and simplest
algorithm in the computer science
lexicon. It can be said to be one of
those algorithms you learn at your
at an early age and yet it has
been shown to be diffi cult to get
right: the edge cases can trip you
up badly.

 In this issue… C
onsider this problem:
you are given a phone
book and you have to
fi nd the name associated

with a particular phone number.
If you were inclined to even start
this task (and, believe me, I
wouldn’t), the only way you could
do it would be to start at the
beginning of the book and read
each phone number until you fi nd
the one requested, at which point
you’ll know the name of the
person who has that phone
number. This simple algorithm is
called sequential search.

The opposite problem though,
fi nding out the phone number for
a given name, we can easily solve.
In general, we’d fl ip quickly
through the book until we fi nd the
fi rst letter of the surname, and
then hone into the name we want,
using the surnames printed at the
top of the pages (in essence,
narrowing in on subsequent
letters in the surname) until we
reach the right page. At this point
what we’d probably do is to look at
the middle name in that page. If
it’s not the one we want, we can
immediately state which half of
the page contains our requested
name, and just concentrate on
that half. We’d essentially do the
same thing: look at the middle
name in the half of the page, and
then know which half of the half
page we need to concentrate on.
Eventually we’d zero in on the
surname we want. I even fi nd that
once I’ve roughly found out where
the name is, I’ll sequentially
search through that small part of
the page for the one I want.

Binary search
That process, once formalized and
implemented for a computer, is
known as binary search.

Binary search is one of those
algorithms that seems to have
been around as long as Euclid’s
algorithm for fi nding the Greatest
Common Divisor of two numbers,

smaller. If it’s equal, great, we can
exit the algorithm and report the
index of the array where we found
the item. If the middle element is
smaller, the item we’re looking for
must be in the half of the array
that’s greater than this middle
element; otherwise it’s in the half
of the array that’s smaller than the
middle element. We now apply the
same algorithm again to the half
array, whichever half we
determined the item to be in.

In implementing this
algorithm, rather than copying
the initial array into smaller and
smaller arrays, we make use of
two indexes, traditionally called
lower and upper, to determine the
bounds of the sub-array we’re
working on. We initially set lower
to 0 and upper to the index of the
last element in the array.

To be pedantic and not use exits
from loops or from routines, we
make use of a Boolean variable,
still looking to determine when
we should exit the loop (that is,
when we determine the item is not
present or the index of the element
in the array if it is). We use an
integer variable foundAtIndex for

and my example of the phone
book seems to prove it. In fact it
was only formally stated in 1946
by John Mauchly (1907-1980), but
a complete implementation was
produced in 1960 by D.H. Lehmer
(1905-1991), the number theorist
also famous for primality testing
and generating random numbers.

Problems with bugs
In fact, for some reason, binary
search is one of those algorithms
whose implementation always
seems to cause problems. The
main bugs that surface seem to be
off-by-one errors or even an
infi nite loop. Let’s implement a
bug-free version in C#.

First we must defi ne the
algorithm itself. Suppose we have
an array of elements that are in
sorted order and an item that we
are trying to fi nd in this array. If
the array is empty, we can
immediately return and report
that the item can’t be found.
Otherwise, we fi nd the middle
element in the array. There are
three possibilities: this middle
element is equal to the item we’re
looking for, it’s larger, or it’s

Effi cient search tools
Get the most out of binary search algorithms with a basic halving strategy

Theory
workshop

Code it

3

1 The steps taken in an example of a successful search for 42. Note how the
upper and lower bounds zero in on it.

Binary search can help with the
game of guessing a number less
than one million using 20
questions. You guess the halfway
point of your current range. If it’s
equal, great, you’re done. If it’s less
(or greater) then you modify your
range accordingly and continue
the algorithm.

In essence, by following this
algorithm, you are guessing the
digits of the binary representation
of the number the other has
selected from the most to the least
signifi cant. Because one million is
less than two to the twentieth
power, you’ll only need at most 20
questions to determine all the
binary digits and therefore the
actual number.

Nugget

PCP257.theory 33PCP257.theory 33 10/5/07 12:30:1010/5/07 12:30:10

Code it Theory workshop

34 257 July 2007

the index at which we fi nd our
item; with the assumption that if
we don’t fi nd it, it’ll be -1. It is this
value we’ll be returning.
int BinarySearch(int[] array, int item)
{
 int lower = 0;
 int upper = array.Length - 1;
 int middle;
 int foundAtIndex = -1; // this
means “not found”
 bool stillLooking = true;
 while (stillLooking) {
 ... code that searches ...
 }
 return foundAtIndex;
}

We now enter the implementation
of the algorithm proper. The fi rst
thing to check is if the array is
empty. When using our index
variables, we have an empty array
when lower is greater than upper.
A common error is to assume that
the array is empty when these
variables are equal, but when they
are, the array has one element.

So suppose lower is less than or
equal to upper. We can calculate
the middle index, middle, to be
(lower + upper)/2. (The division
operator is assumed here to be
integer division, so that 6/2 is 3
and 7/2 is also 3).

We can now check to see
whether the element at middle is
less than, equal to, or greater than
the item we’re trying to fi nd. If
equal, we return the value of
middle. If it’s less than the item
we’re searching for, then we set
lower to middle+1, and go around
to try again. In adding one to the

value of middle, we are
deliberately excluding that
element from the sub-array that
we’re going to search next, and
quite rightly too since this is the
prime cause of inadvertent
infi nite loops.

If the middle element is greater
than the item we’re searching for,
we set upper to middle-1, and go
around and try again. And again,
we are deliberately excluding the
middle element from the
subsequent sub-array.
if (lower > upper) {
stillLooking = false;
}
else {
middle = (lower + upper) / 2;
if (array[middle] == item) {

stillLooking = false;
foundAtIndex = middle;
}
else if (array[middle] < item) {
lower = middle + 1;
}
else {
upper = middle - 1;
}
}

Although this code will work, it is
a little verbose, and there are ways
in which it can be made tighter.
The important point to note is
that it works, and any changes you
make should be rigorously tested
against the original.

The fi gures show the operation
of the binary search algorithm in

action. Figure 1 shows a successful
search for the item 42 in a sorted
array. Notice how the bounds of
the range quickly close in on the
element we’re searching for.
Figure 2, shows an unsuccessful
search for the item 13 in the array.
This time notice how the bounds
cross over in the last step to
indicate that the item is not
present in the array.

Numerical analysis
Binary search is ubiquitous in
programming. I show elsewhere
in the callouts a couple of
examples of its use. Another
example from the fi eld of
numerical analysis is when you
are trying to fi nd the root of a
mathematical function in x (that
is, for which value of x does the
function equal zero?). One way is
to use the bisection method: fi nd a
value of x for which the function is
negative, and one for which it is
positive. Hence the value for x for
which it is zero is between them.
Find the middle value of x. If the
function evaluates to zero we’ve
found the answer, otherwise we
can reduce one of the bounds for x
to this middle value. Repeat until
we fi nd the answer.

Binary search is also used in
several data structures, especially
sorted binary trees and the B-
trees used by database engines to
index data. In fact, any time you
hear the phrase ‘divide-and-
conquer’ when talking about an
algorithm, you’re probably looking
at a use for binary search. ■

Julian Bucknall is a program
manager and CTO for companies
from Turbo Power to Microsoft
feedback@pcplus.co.uk.

Binary search turns up everywhere.
Do you want to calculate the
number of rightmost zero bits for
an unsigned 8-bit integer? (So, for
10111000 the answer is three). Use
binary search. Set a counter to
zero. Check if the four rightmost
bits are zero by ANDing with 0x0F.
If the result is zero increment the
counter by four and shift the
number right by four. Now check if
the two rightmost bits are zero by
ANDing with 0x03. If the result is
zero, increment the counter by two
and shift the number left by two.
Finally check if the rightmost bit is
zero by ANDing with 0x01, and if
the result is zero, increment the
counter by one. The counter is now
equal to the number of rightmost
zeros. This binary search can be
extended to 32-bit integers
quite easily. ■

Nugget

Spotlight on… Bugs in standard binary
Although the code I’ve presented
in the main article works, there is
a subtle bug that appears with
large numbers of elements. The
bug is extremely subtle: the code
shown has been accepted to be
bug-free for a very long time and
it was a complete surprise when
Joshua Bloch, a Software
Engineer at Google, published a
blog post last year that revealed
this subtle bug.

The problem lies with the
statement that calculates the

value of middle. It looks innocuous
enough, and for the vast majority of
values it’s perfectly correct. The
problem occurs when the numbers
get too large.

The largest value that can be
held by a 32-bit integer is just over
two billion. Let’s imagine that both
upper and lower are about 1.5
billion. When we add them together
prior to dividing by two, we’ll
overfl ow the range of an integer. To
put it another way, we cannot hold
the result in an integer variable. In

fact, the overfl owed sum will be
negative, causing all kinds of
bugs in the algorithm.

The solution is to use the
following statement instead:

middle = lower + (upper – lower)
/ 2

This avoids the overfl ow. An error
like this will often fail silently,
throwing your maths when you
least expect it. Always test your
code,keeping both eyes peeled
for anomalous results. ■

1 In this example, the bounds cross in, but finally cross over – an unsucessful
binary search in action.

3

PCP257.theory 34PCP257.theory 34 10/5/07 12:30:1410/5/07 12:30:14

